lint
Browse files
app.py
CHANGED
@@ -1,73 +1,93 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
-
from constants import
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
|
6 |
-
from utils_display import
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from datetime import datetime, timezone
|
8 |
|
9 |
LAST_UPDATED = "September, 7th 2023"
|
10 |
GPU_MODEL = "NVIDIA Tesla M60"
|
11 |
|
12 |
-
column_names = {
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()
|
30 |
|
31 |
if not csv_results.exists():
|
32 |
raise Exception(f"CSV file {csv_results} does not exist locally")
|
33 |
-
|
34 |
# Get csv with data and parse columns
|
35 |
original_df = pd.read_csv(csv_results)
|
36 |
lst_evaluated_models = original_df["model"].tolist()
|
37 |
lst_evaluated_models = list(map(str.lower, lst_evaluated_models))
|
38 |
|
|
|
39 |
# Formats the columns
|
40 |
def decimal_formatter(x):
|
41 |
x = "{:.2f}".format(x)
|
42 |
return x
|
43 |
|
|
|
44 |
def perc_formatter(x):
|
45 |
x = "{:.2%}".format(x)
|
46 |
while len(x) < 6:
|
47 |
x = f"0{x}"
|
48 |
return x
|
49 |
|
|
|
50 |
# Drop columns not specified in dictionary
|
51 |
cols_to_drop = [col for col in original_df.columns if col not in column_names]
|
52 |
original_df.drop(cols_to_drop, axis=1, inplace=True)
|
53 |
|
54 |
for col in original_df.columns:
|
55 |
if col == "model":
|
56 |
-
original_df[col] = original_df[col].apply(
|
|
|
|
|
57 |
elif col == "estimated_fps":
|
58 |
-
original_df[col] = original_df[col].apply(
|
|
|
|
|
59 |
elif col == "hub_license":
|
60 |
continue
|
61 |
else:
|
62 |
-
original_df[col] = original_df[col].apply(perc_formatter)
|
63 |
-
|
64 |
original_df.rename(columns=column_names, inplace=True)
|
65 |
|
66 |
COLS = [c.name for c in fields(AutoEvalColumn)]
|
67 |
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
68 |
|
|
|
69 |
def request_model(model_text, chbcoco2017):
|
70 |
-
|
71 |
# Determine the selected checkboxes
|
72 |
dataset_selection = []
|
73 |
if chbcoco2017:
|
@@ -75,33 +95,37 @@ def request_model(model_text, chbcoco2017):
|
|
75 |
|
76 |
if len(dataset_selection) == 0:
|
77 |
return styled_error("You need to select at least one dataset")
|
78 |
-
|
79 |
-
# Check if model exists on the hub
|
80 |
base_model_on_hub, error_msg = is_model_on_hub(model_text)
|
81 |
if not base_model_on_hub:
|
82 |
return styled_error(f"Base model '{model_text}' {error_msg}")
|
83 |
-
|
84 |
# Check if model is already evaluated
|
85 |
-
model_text = model_text.replace(" ","")
|
86 |
if model_text.lower() in lst_evaluated_models:
|
87 |
-
return styled_error(
|
88 |
-
|
|
|
|
|
89 |
# Construct the output dictionary
|
90 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
91 |
-
required_datasets =
|
92 |
eval_entry = {
|
93 |
"date": current_time,
|
94 |
"model": model_text,
|
95 |
-
"datasets_selected": required_datasets
|
96 |
}
|
97 |
-
|
98 |
-
# Prepare file path
|
99 |
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
|
100 |
-
|
101 |
-
fn_datasets =
|
102 |
-
filename = model_text.replace("/","@") + "@@" + fn_datasets
|
103 |
if filename in requested_models:
|
104 |
-
return styled_error(
|
|
|
|
|
105 |
try:
|
106 |
filename_ext = filename + ".txt"
|
107 |
out_filepath = DIR_OUTPUT_REQUESTS / filename_ext
|
@@ -109,18 +133,21 @@ def request_model(model_text, chbcoco2017):
|
|
109 |
# Write the results to a text file
|
110 |
with open(out_filepath, "w") as f:
|
111 |
f.write(json.dumps(eval_entry))
|
112 |
-
|
113 |
upload_file(filename, out_filepath)
|
114 |
-
|
115 |
# Include file in the list of uploaded files
|
116 |
requested_models.append(filename)
|
117 |
-
|
118 |
# Remove the local file
|
119 |
out_filepath.unlink()
|
120 |
|
121 |
-
return styled_message(
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
with gr.Blocks() as demo:
|
126 |
gr.HTML(BANNER, elem_id="banner")
|
@@ -131,39 +158,57 @@ with gr.Blocks() as demo:
|
|
131 |
leaderboard_table = gr.components.Dataframe(
|
132 |
value=original_df,
|
133 |
datatype=TYPES,
|
134 |
-
max_rows=None,
|
135 |
elem_id="leaderboard-table",
|
136 |
interactive=False,
|
137 |
visible=True,
|
138 |
-
|
139 |
|
140 |
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1):
|
141 |
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
|
142 |
|
143 |
-
with gr.TabItem(
|
|
|
|
|
144 |
with gr.Column():
|
145 |
-
gr.Markdown(
|
|
|
|
|
|
|
146 |
with gr.Column():
|
147 |
gr.Markdown("Select a dataset:", elem_classes="markdown-text")
|
148 |
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
with gr.Column():
|
152 |
mdw_submission_result = gr.Markdown()
|
153 |
btn_submitt = gr.Button(value="π Request")
|
154 |
-
btn_submitt.click(
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
159 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
|
160 |
|
161 |
with gr.Row():
|
162 |
with gr.Accordion("π Citation", open=False):
|
163 |
gr.Textbox(
|
164 |
-
value=CITATION_TEXT,
|
|
|
165 |
label="Copy the BibTeX snippet to cite this source",
|
166 |
elem_id="citation-button",
|
167 |
-
|
|
|
168 |
|
169 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
+
from constants import (
|
5 |
+
BANNER,
|
6 |
+
INTRODUCTION_TEXT,
|
7 |
+
CITATION_TEXT,
|
8 |
+
METRICS_TAB_TEXT,
|
9 |
+
DIR_OUTPUT_REQUESTS,
|
10 |
+
)
|
11 |
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
|
12 |
+
from utils_display import (
|
13 |
+
AutoEvalColumn,
|
14 |
+
fields,
|
15 |
+
make_clickable_model,
|
16 |
+
styled_error,
|
17 |
+
styled_message,
|
18 |
+
)
|
19 |
from datetime import datetime, timezone
|
20 |
|
21 |
LAST_UPDATED = "September, 7th 2023"
|
22 |
GPU_MODEL = "NVIDIA Tesla M60"
|
23 |
|
24 |
+
column_names = {
|
25 |
+
"model": "model",
|
26 |
+
"AP-IoU=0.50:0.95-area=all-maxDets=100": "AP",
|
27 |
+
"AP-IoU=0.50-area=all-maxDets=100": "AP@.50",
|
28 |
+
"AP-IoU=0.75-area=all-maxDets=100": "AP@.75",
|
29 |
+
"AP-IoU=0.50:0.95-area=small-maxDets=100": "AP-S",
|
30 |
+
"AP-IoU=0.50:0.95-area=medium-maxDets=100": "AP-M",
|
31 |
+
"AP-IoU=0.50:0.95-area=large-maxDets=100": "AP-L",
|
32 |
+
"AR-IoU=0.50:0.95-area=all-maxDets=1": "AR1",
|
33 |
+
"AR-IoU=0.50:0.95-area=all-maxDets=10": "AR10",
|
34 |
+
"AR-IoU=0.50:0.95-area=all-maxDets=100": "AR100",
|
35 |
+
"AR-IoU=0.50:0.95-area=small-maxDets=100": "AR-S",
|
36 |
+
"AR-IoU=0.50:0.95-area=medium-maxDets=100": "AR-M",
|
37 |
+
"AR-IoU=0.50:0.95-area=large-maxDets=100": "AR-L",
|
38 |
+
"estimated_fps": "FPS(*)",
|
39 |
+
"hub_license": "hub license",
|
40 |
+
}
|
41 |
|
42 |
eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()
|
43 |
|
44 |
if not csv_results.exists():
|
45 |
raise Exception(f"CSV file {csv_results} does not exist locally")
|
46 |
+
|
47 |
# Get csv with data and parse columns
|
48 |
original_df = pd.read_csv(csv_results)
|
49 |
lst_evaluated_models = original_df["model"].tolist()
|
50 |
lst_evaluated_models = list(map(str.lower, lst_evaluated_models))
|
51 |
|
52 |
+
|
53 |
# Formats the columns
|
54 |
def decimal_formatter(x):
|
55 |
x = "{:.2f}".format(x)
|
56 |
return x
|
57 |
|
58 |
+
|
59 |
def perc_formatter(x):
|
60 |
x = "{:.2%}".format(x)
|
61 |
while len(x) < 6:
|
62 |
x = f"0{x}"
|
63 |
return x
|
64 |
|
65 |
+
|
66 |
# Drop columns not specified in dictionary
|
67 |
cols_to_drop = [col for col in original_df.columns if col not in column_names]
|
68 |
original_df.drop(cols_to_drop, axis=1, inplace=True)
|
69 |
|
70 |
for col in original_df.columns:
|
71 |
if col == "model":
|
72 |
+
original_df[col] = original_df[col].apply(
|
73 |
+
lambda x: x.replace(x, make_clickable_model(x))
|
74 |
+
)
|
75 |
elif col == "estimated_fps":
|
76 |
+
original_df[col] = original_df[col].apply(
|
77 |
+
decimal_formatter
|
78 |
+
) # For decimal values
|
79 |
elif col == "hub_license":
|
80 |
continue
|
81 |
else:
|
82 |
+
original_df[col] = original_df[col].apply(perc_formatter) # For % values
|
83 |
+
|
84 |
original_df.rename(columns=column_names, inplace=True)
|
85 |
|
86 |
COLS = [c.name for c in fields(AutoEvalColumn)]
|
87 |
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
88 |
|
89 |
+
|
90 |
def request_model(model_text, chbcoco2017):
|
|
|
91 |
# Determine the selected checkboxes
|
92 |
dataset_selection = []
|
93 |
if chbcoco2017:
|
|
|
95 |
|
96 |
if len(dataset_selection) == 0:
|
97 |
return styled_error("You need to select at least one dataset")
|
98 |
+
|
99 |
+
# Check if model exists on the hub
|
100 |
base_model_on_hub, error_msg = is_model_on_hub(model_text)
|
101 |
if not base_model_on_hub:
|
102 |
return styled_error(f"Base model '{model_text}' {error_msg}")
|
103 |
+
|
104 |
# Check if model is already evaluated
|
105 |
+
model_text = model_text.replace(" ", "")
|
106 |
if model_text.lower() in lst_evaluated_models:
|
107 |
+
return styled_error(
|
108 |
+
f"Results of the model '{model_text}' are now ready and available."
|
109 |
+
)
|
110 |
+
|
111 |
# Construct the output dictionary
|
112 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
113 |
+
required_datasets = ", ".join(dataset_selection)
|
114 |
eval_entry = {
|
115 |
"date": current_time,
|
116 |
"model": model_text,
|
117 |
+
"datasets_selected": required_datasets,
|
118 |
}
|
119 |
+
|
120 |
+
# Prepare file path
|
121 |
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
|
122 |
+
|
123 |
+
fn_datasets = "@ ".join(dataset_selection)
|
124 |
+
filename = model_text.replace("/", "@") + "@@" + fn_datasets
|
125 |
if filename in requested_models:
|
126 |
+
return styled_error(
|
127 |
+
f"A request for this model '{model_text}' and dataset(s) was already made."
|
128 |
+
)
|
129 |
try:
|
130 |
filename_ext = filename + ".txt"
|
131 |
out_filepath = DIR_OUTPUT_REQUESTS / filename_ext
|
|
|
133 |
# Write the results to a text file
|
134 |
with open(out_filepath, "w") as f:
|
135 |
f.write(json.dumps(eval_entry))
|
136 |
+
|
137 |
upload_file(filename, out_filepath)
|
138 |
+
|
139 |
# Include file in the list of uploaded files
|
140 |
requested_models.append(filename)
|
141 |
+
|
142 |
# Remove the local file
|
143 |
out_filepath.unlink()
|
144 |
|
145 |
+
return styled_message(
|
146 |
+
"π€ Your request has been submitted and will be evaluated soon!</p>"
|
147 |
+
)
|
148 |
+
except Exception:
|
149 |
+
return styled_error("Error submitting request!")
|
150 |
+
|
151 |
|
152 |
with gr.Blocks() as demo:
|
153 |
gr.HTML(BANNER, elem_id="banner")
|
|
|
158 |
leaderboard_table = gr.components.Dataframe(
|
159 |
value=original_df,
|
160 |
datatype=TYPES,
|
|
|
161 |
elem_id="leaderboard-table",
|
162 |
interactive=False,
|
163 |
visible=True,
|
164 |
+
)
|
165 |
|
166 |
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1):
|
167 |
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
|
168 |
|
169 |
+
with gr.TabItem(
|
170 |
+
"βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=2
|
171 |
+
):
|
172 |
with gr.Column():
|
173 |
+
gr.Markdown(
|
174 |
+
"# βοΈβ¨ Request results for a new model here!",
|
175 |
+
elem_classes="markdown-text",
|
176 |
+
)
|
177 |
with gr.Column():
|
178 |
gr.Markdown("Select a dataset:", elem_classes="markdown-text")
|
179 |
with gr.Column():
|
180 |
+
model_name_textbox = gr.Textbox(
|
181 |
+
label="Model name (user_name/model_name)"
|
182 |
+
)
|
183 |
+
chb_coco2017 = gr.Checkbox(
|
184 |
+
label="COCO validation 2017 dataset",
|
185 |
+
visible=False,
|
186 |
+
value=True,
|
187 |
+
interactive=False,
|
188 |
+
)
|
189 |
with gr.Column():
|
190 |
mdw_submission_result = gr.Markdown()
|
191 |
btn_submitt = gr.Button(value="π Request")
|
192 |
+
btn_submitt.click(
|
193 |
+
request_model,
|
194 |
+
[model_name_textbox, chb_coco2017],
|
195 |
+
mdw_submission_result,
|
196 |
+
)
|
197 |
+
|
198 |
+
gr.Markdown(
|
199 |
+
f'(*) FPS was measured using *{GPU_MODEL}* processing 1 image per batch. Refer to the π "Metrics" tab for further details.',
|
200 |
+
elem_classes="markdown-text",
|
201 |
+
)
|
202 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
|
203 |
|
204 |
with gr.Row():
|
205 |
with gr.Accordion("π Citation", open=False):
|
206 |
gr.Textbox(
|
207 |
+
value=CITATION_TEXT,
|
208 |
+
lines=7,
|
209 |
label="Copy the BibTeX snippet to cite this source",
|
210 |
elem_id="citation-button",
|
211 |
+
show_copy_button=True,
|
212 |
+
)
|
213 |
|
214 |
demo.launch()
|