Yacine Jernite
initial commit
7bffaaf
raw
history blame
25.9 kB
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gzip
import json
import math
import os
from os.path import exists
from os.path import join as pjoin
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import torch
import transformers
from datasets import load_dataset
from huggingface_hub import HfApi
from tqdm import tqdm
# from .dataset_utils import prepare_clustering_dataset
pd.options.display.max_colwidth = 256
_CACHE_DIR = "cache_dir"
_DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
_MAX_MERGE = 20000000 # to run on 64GB RAM laptop
def sentence_mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
] # First element of model_output contains all token embeddings
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
# get nearest neighbors of a centroid by dot product
def get_examplars(example_ids, centroid, embeddings, dset, n_examplars):
example_embeds = embeddings[example_ids]
example_scores = torch.mv(example_embeds, centroid)
s_scores, s_ids = example_scores.sort(dim=-1, descending=True)
examplars = [
(example_ids[i.item()], s.item())
for i, s in zip(s_ids[:n_examplars], s_scores[:n_examplars])
]
res = []
for eid, score in examplars:
dct = dict(dset[eid])
dct["score"] = score
res += [dct]
return res
# order node children so that the large ones are in the middle
# makes visualization more balanced
def pretty_order(nodes, node_ids):
sorted_ids = sorted(node_ids, key=lambda nid: nodes[nid]["weight"])
sorted_a = [nid for i, nid in enumerate(sorted_ids) if i % 2 == 0]
sorted_b = [nid for i, nid in enumerate(sorted_ids) if i % 2 == 1]
sorted_b.reverse()
return sorted_a + sorted_b
def make_tree_plot(node_list, root_id, max_depth=-1):
# make plot nodes
plot_nodes = [{} for _ in node_list]
root = {
"parent_id": -1,
"node_id": root_id,
"label": node_list[root_id]["hover_text"],
"weight": node_list[root_id]["weight"],
"num_leaves": 0,
"children_ids": node_list[root_id]["children_ids"],
"Xmin": 0,
"Y": 0,
}
plot_nodes[root_id] = root
root_depth = node_list[root_id]["depth"]
def rec_make_coordinates(node):
total_weight = 0
recurse = (max_depth == -1) or (
node_list[node["node_id"]]["depth"] - root_depth < max_depth - 1
)
for cid in node["children_ids"]:
plot_nodes[cid] = {
"parent_id": node["node_id"],
"node_id": cid,
"label": node_list[cid]["hover_text"],
"weight": node_list[cid]["weight"],
"children_ids": node_list[cid]["children_ids"] if recurse else [],
"Xmin": node["Xmin"] + total_weight,
"Y": node["Y"] - 1,
}
plot_nodes[cid]["num_leaves"] = 1 if len(plot_nodes[cid]["children_ids"]) == 0 else 0
rec_make_coordinates(plot_nodes[cid])
total_weight += plot_nodes[cid]["num_leaves"]
node["num_leaves"] += plot_nodes[cid]["num_leaves"]
node["Xmax"] = node["Xmin"] + node["num_leaves"]
node["X"] = node["Xmin"] + (node["num_leaves"] / 2)
rec_make_coordinates(root)
subtree_nodes = [node for node in plot_nodes if len(node) > 0]
nid_map = dict([(node["node_id"], nid) for nid, node in enumerate(subtree_nodes)])
labels = [node["label"] for node in subtree_nodes]
E = [] # list of edges
Xn = []
Yn = []
Xe = []
Ye = []
for nid, node in enumerate(subtree_nodes):
Xn += [node["X"]]
Yn += [node["Y"]]
for cid in node["children_ids"]:
child = plot_nodes[cid]
E += [(nid, nid_map[child["node_id"]])]
Xe += [node["X"], child["X"], None]
Ye += [node["Y"], child["Y"], None]
# make figure
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=Xe,
y=Ye,
mode="lines",
name="",
line=dict(color="rgb(210,210,210)", width=1),
hoverinfo="none",
)
)
fig.add_trace(
go.Scatter(
x=Xn,
y=Yn,
mode="markers",
name="nodes",
marker=dict(
symbol="circle-dot",
size=18,
color="#6175c1",
line=dict(color="rgb(50,50,50)", width=1)
# '#DB4551',
),
text=labels,
hoverinfo="text",
opacity=0.8,
)
)
fig.layout.showlegend = False
return fig
class ClusteringBuilder:
def __init__(
self,
dataset_name,
config_name,
split_name,
input_field_path,
label_name,
num_rows,
model_name=_DEFAULT_MODEL,
):
"""Item embeddings and clustering"""
self.dataset_name = dataset_name
self.config_name = config_name
self.split_name = split_name
self.input_field_path = input_field_path
self.label_name = label_name
self.num_rows = num_rows
self.cache_path_list = [
_CACHE_DIR,
dataset_name.replace("/", "---"),
f"{'default' if config_name is None else config_name}",
f"{'train' if split_name is None else split_name}",
f"field-{'->'.join(input_field_path)}-label-{label_name}",
f"{num_rows}_rows",
model_name.replace("/", "---"),
]
self.cache_path = pjoin(*self.cache_path_list)
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.model_name = model_name
# prepare embeddings for the dataset
def set_model(self):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
self.model = transformers.AutoModel.from_pretrained(self.model_name).to(
self.device
)
def set_features_dataset(self, use_streaming, use_auth_token, use_dataset):
dset, dset_path = prepare_clustering_dataset(
dataset_name=self.dataset_name,
input_field_path=self.input_field_path,
label_name=self.label_name,
config_name=self.config_name,
split_name=self.split_name,
num_rows=self.num_rows,
use_streaming=use_streaming,
use_auth_token=use_auth_token,
use_dataset=use_dataset,
)
self.features_dset = dset
def compute_feature_embeddings(self, sentences):
batch = self.tokenizer(
sentences, padding=True, truncation=True, return_tensors="pt"
)
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.no_grad():
model_output = self.model(**batch)
sentence_embeds = sentence_mean_pooling(
model_output, batch["attention_mask"]
)
sentence_embeds /= sentence_embeds.norm(dim=-1, keepdim=True)
return sentence_embeds
def set_embeddings_dataset(self):
def batch_embed(examples):
return {
"embedding": [
embed.tolist()
for embed in self.compute_feature_embeddings(examples["field"])
]
}
if not exists(self.cache_path):
os.mkdir(self.cache_path)
self.embeddings_dset = self.features_dset.map(
batch_embed,
batched=True,
batch_size=32,
cache_file_name=pjoin(self.cache_path, "embeddings_dset"),
)
def prepare_embeddings(
self,
use_streaming=True,
use_auth_token=None,
use_dataset=None,
):
self.set_model()
self.set_features_dataset(use_streaming, use_auth_token, use_dataset)
self.set_embeddings_dataset()
# make cluster tree
def prepare_merges(self, batch_size, low_thres):
self.embeddings = torch.Tensor(self.embeddings_dset["embedding"])
all_indices = torch.LongTensor(torch.Size([0, 2]))
all_scores = torch.Tensor(torch.Size([0]))
n_batches = math.ceil(self.embeddings_dset.num_rows / batch_size)
for a in range(n_batches):
for b in tqdm(range(a, n_batches)):
cos_scores = torch.mm(
self.embeddings[a * batch_size : (a + 1) * batch_size],
self.embeddings[b * batch_size : (b + 1) * batch_size].t(),
)
if a == b:
cos_scores = cos_scores.triu(diagonal=1)
merge_indices = torch.nonzero(cos_scores > low_thres)
merge_indices[:, 0] += a * batch_size
merge_indices[:, 1] += b * batch_size
merge_scores = cos_scores[cos_scores > low_thres]
all_indices = torch.cat([all_indices, merge_indices], dim=0)
all_scores = torch.cat([all_scores, merge_scores], dim=0)
self.sorted_scores, sorted_score_ids = all_scores.sort(dim=0, descending=True)
self.sorted_scores = self.sorted_scores[:_MAX_MERGE]
sorted_score_ids = sorted_score_ids[:_MAX_MERGE]
self.sorted_indices = all_indices[sorted_score_ids]
def make_starting_nodes(self, identical_threshold):
identical_indices = self.sorted_indices[
self.sorted_scores >= identical_threshold
]
identical_inter = identical_indices[
identical_indices[:, 1].sort(stable=True).indices
]
identical_sorted = identical_inter[
identical_inter[:, 0].sort(stable=True).indices
]
self.parents = {}
for a_pre, b_pre in identical_sorted:
a = a_pre.item()
b = b_pre.item()
while self.parents.get(a, -1) != -1:
a = self.parents[a]
self.parents[b] = a
self.duplicates = {}
for a, b in self.parents.items():
self.duplicates[b] = self.duplicates.get(b, []) + [a]
self.nodes = {}
for node_id in range(self.features_dset.num_rows):
if node_id in self.parents:
continue
else:
self.nodes[node_id] = {
"node_id": node_id,
"parent_id": -1,
"children": [],
"children_ids": [],
"example_ids": [node_id],
"weight": 1,
"merge_threshold": 0.98,
"depth": 0,
}
def make_merge_nodes(self, identical_threshold, thres_step):
new_node_id = self.features_dset.num_rows
current_thres = identical_threshold
depth = 1
merge_ids = self.sorted_indices[self.sorted_scores < identical_threshold]
merge_scores = self.sorted_scores[self.sorted_scores < identical_threshold]
for (node_id_a, node_id_b), merge_score in tqdm(
zip(merge_ids, merge_scores), total=len(merge_ids)
):
if merge_score.item() < current_thres:
current_thres -= thres_step
merge_a = node_id_a.item()
while self.parents.get(merge_a, -1) != -1:
merge_a = self.parents[merge_a]
self.parents[node_id_a] = merge_a
merge_b = node_id_b.item()
while self.parents.get(merge_b, -1) != -1:
merge_b = self.parents[merge_b]
self.parents[node_id_b] = merge_b
if merge_a == merge_b:
continue
else:
merge_b, merge_a = sorted([merge_a, merge_b])
node_a = self.nodes[merge_a]
node_b = self.nodes[merge_b]
if (node_a["depth"]) > 0 and min(
node_a["merge_threshold"], node_b["merge_threshold"]
) == current_thres:
node_a["depth"] = max(node_a["depth"], node_b["depth"])
node_a["weight"] += node_b["weight"]
node_a["children_ids"] += (
node_b["children_ids"]
if node_b["depth"] > 0
else [node_b["node_id"]]
)
for cid in node_b["children_ids"]:
self.nodes[cid]["parent_id"] = node_a["node_id"]
self.parents[cid] = node_a["node_id"]
node_b["parent_id"] = node_a["node_id"]
self.parents[node_b["node_id"]] = node_a["node_id"]
else:
new_nid = new_node_id
new_node_id += 1
new_node = {
"node_id": new_nid,
"parent_id": -1,
"children_ids": [node_a["node_id"], node_b["node_id"]],
"example_ids": [],
"weight": node_a["weight"] + node_b["weight"],
"merge_threshold": current_thres,
"depth": max(node_a["depth"], node_b["depth"]) + 1,
}
depth = max(depth, new_node["depth"])
node_a["parent_id"] = new_nid
node_b["parent_id"] = new_nid
self.parents[node_a["node_id"]] = new_nid
self.parents[node_b["node_id"]] = new_nid
self.parents[node_id_a] = new_nid
self.parents[node_id_b] = new_nid
self.nodes[new_nid] = new_node
return new_node_id
def collapse_nodes(self, node, min_weight):
children = [
self.collapse_nodes(self.nodes[cid], min_weight)
for cid in node["children_ids"]
if self.nodes[cid]["weight"] >= min_weight
]
extras = [
lid
for cid in node["children_ids"]
if self.nodes[cid]["weight"] < min_weight
for lid in self.collapse_nodes(self.nodes[cid], min_weight)["example_ids"]
] + node["example_ids"]
extras_embed = (
torch.cat(
[self.embeddings[eid][None, :] for eid in extras],
dim=0,
).sum(dim=0)
if len(extras) > 0
else torch.zeros(self.embeddings.shape[-1])
)
if len(children) == 0:
node["extras"] = extras
node["children_ids"] = []
node["example_ids"] = extras
node["embedding_sum"] = extras_embed
elif len(children) == 1:
node["extras"] = extras + children[0]["extras"]
node["children_ids"] = children[0]["children_ids"]
node["example_ids"] = extras + children[0]["example_ids"]
node["embedding_sum"] = extras_embed + children[0]["embedding_sum"]
else:
node["extras"] = extras
node["children_ids"] = [child["node_id"] for child in children]
node["example_ids"] = extras + [
eid for child in children for eid in child["example_ids"]
]
node["embedding_sum"] = (
extras_embed
+ torch.cat(
[child["embedding_sum"][None, :] for child in children],
dim=0,
).sum(dim=0)
)
assert (
len(node["example_ids"]) == node["weight"]
), f"stuck at {node['node_id']} - {len(node['example_ids'])} - {node['weight']}"
return node
def finalize_node(self, node, parent_id, n_examplars, with_labels):
new_node_id = len(self.tree_node_list)
new_node = {
"node_id": new_node_id,
"parent_id": parent_id,
"depth": 0
if parent_id == -1
else self.tree_node_list[parent_id]["depth"] + 1,
"merged_at": node["merge_threshold"],
"weight": node["weight"],
"is_extra": False,
}
self.tree_node_list += [new_node]
centroid = node["embedding_sum"] / node["embedding_sum"].norm()
new_node["centroid"] = centroid.tolist()
new_node["examplars"] = get_examplars(
node["example_ids"],
centroid,
self.embeddings,
self.features_dset,
n_examplars,
)
label_counts = {}
if with_labels:
for eid in node["example_ids"]:
label = self.features_dset[eid]["label"]
label_counts[label] = label_counts.get(label, 0) + 1
new_node["label_counts"] = sorted(
label_counts.items(), key=lambda x: x[1], reverse=True
)
if len(node["children_ids"]) == 0:
new_node["children_ids"] = []
else:
children = [
self.nodes[cid]
for cid in pretty_order(self.nodes, node["children_ids"])
]
children_ids = [
self.finalize_node(child, new_node_id, n_examplars, with_labels)
for child in children
]
new_node["children_ids"] = children_ids
if len(node["extras"]) > 0:
extra_node = {
"node_id": len(self.tree_node_list),
"parent_id": new_node_id,
"depth": new_node["depth"] + 1,
"merged_at": node["merge_threshold"],
"weight": len(node["extras"]),
"is_extra": True,
"centroid": new_node["centroid"],
"examplars": get_examplars(
node["extras"],
centroid,
self.embeddings,
self.features_dset,
n_examplars,
),
}
self.tree_node_list += [extra_node]
label_counts = {}
if with_labels:
for eid in node["extras"]:
label = self.features_dset[eid]["label"]
label_counts[label] = label_counts.get(label, 0) + 1
extra_node["label_counts"] = sorted(
label_counts.items(), key=lambda x: x[1], reverse=True
)
extra_node["children_ids"] = []
new_node["children_ids"] += [extra_node["node_id"]]
return new_node_id
def make_hover_text(self, num_examples=5, text_width=64, with_labels=False):
for nid, node in enumerate(self.tree_node_list):
line_list = [
f"Node {nid:3d} - {node['weight']:6d} items - Linking threshold: {node['merged_at']:.2f}"
]
for examplar in node["examplars"][:num_examples]:
line_list += [
f"{examplar['ids']:6d}:{examplar['score']:.2f} - {examplar['field'][:text_width]}"
+ (f" - {examplar['label']}" if with_labels else "")
]
if with_labels:
line_list += ["Label distribution"]
for label, count in node["label_counts"]:
line_list += [f" - label: {label} - {count} items"]
node["hover_text"] = "<br>".join(line_list)
def build_tree(
self,
batch_size=10000,
low_thres=0.5,
identical_threshold=0.95,
thres_step=0.05,
min_weight=10,
n_examplars=25,
hover_examples=5,
hover_text_width=64,
):
self.prepare_merges(batch_size, low_thres)
self.make_starting_nodes(identical_threshold)
# make a root to join all trees
root_node_id = self.make_merge_nodes(identical_threshold, thres_step)
top_nodes = [node for node in self.nodes.values() if node["parent_id"] == -1]
root_node = {
"node_id": root_node_id,
"parent_id": -1,
"children_ids": [node["node_id"] for node in top_nodes],
"example_ids": [],
"weight": sum([node["weight"] for node in top_nodes]),
"merge_threshold": -1.0,
"depth": 1 + max([node["depth"] for node in top_nodes]),
}
for node in top_nodes:
node["parent_id"] = root_node_id
self.nodes[root_node_id] = root_node
_ = self.collapse_nodes(root_node, min_weight)
self.tree_node_list = []
self.finalize_node(
root_node,
-1,
n_examplars,
with_labels=(self.label_name is not None),
)
self.make_hover_text(
num_examples=hover_examples,
text_width=hover_text_width,
with_labels=(self.label_name is not None),
)
def push_to_hub(self, use_auth_token=None, file_name=None):
path_list = self.cache_path_list
name = "tree" if file_name is None else file_name
tree_file = pjoin(pjoin(*path_list), f"{name}.jsonl.gz")
fout = gzip.open(tree_file, "w")
for node in tqdm(self.tree_node_list):
_ = fout.write((json.dumps(node) + "\n").encode("utf-8"))
fout.close()
api = HfApi()
file_loc = api.upload_file(
path_or_fileobj=tree_file,
path_in_repo=pjoin(pjoin(*path_list[1:]), f"{name}.jsonl.gz"),
repo_id="yjernite/datasets_clusters",
token=use_auth_token,
repo_type="dataset",
)
return file_loc
class Clustering:
def __init__(
self,
dataset_name,
config_name,
split_name,
input_field_path,
label_name,
num_rows,
n_examplars=10,
model_name=_DEFAULT_MODEL,
file_name=None,
max_depth_subtree=3,
):
self.dataset_name = dataset_name
self.config_name = config_name
self.split_name = split_name
self.input_field_path = input_field_path
self.label_name = label_name
self.num_rows = num_rows
self.model_name = model_name
self.n_examplars = n_examplars
self.file_name = "tree" if file_name is None else file_name
self.repo_path_list = [
dataset_name.replace("/", "---"),
f"{'default' if config_name is None else config_name}",
f"{'train' if split_name is None else split_name}",
f"field-{'->'.join(input_field_path)}-label-{label_name}",
f"{num_rows}_rows",
model_name.replace("/", "---"),
f"{self.file_name}.jsonl.gz",
]
self.repo_path = pjoin(*self.repo_path_list)
self.node_list = load_dataset(
"yjernite/datasets_clusters", data_files=[self.repo_path]
)["train"]
self.node_reps = [{} for node in self.node_list]
self.max_depth_subtree = max_depth_subtree
def set_full_tree(self):
self.node_reps[0]["tree"] = self.node_reps[0].get(
"tree",
make_tree_plot(
self.node_list,
0,
),
)
def get_full_tree(self):
self.set_full_tree()
return self.node_reps[0]["tree"]
def set_node_subtree(self, node_id):
self.node_reps[node_id]["subtree"] = self.node_reps[node_id].get(
"subtree",
make_tree_plot(
self.node_list,
node_id,
self.max_depth_subtree,
),
)
def get_node_subtree(self, node_id):
self.set_node_subtree(node_id)
return self.node_reps[node_id]["subtree"]
def set_node_examplars(self, node_id):
self.node_reps[node_id]["examplars"] = self.node_reps[node_id].get(
"examplars",
pd.DataFrame(
[
{
"id": exple["ids"],
"score": exple["score"],
"field": exple["field"],
"label": exple.get("label", "N/A"),
}
for exple in self.node_list[node_id]["examplars"]
][: self.n_examplars]
),
)
def get_node_examplars(self, node_id):
self.set_node_examplars(node_id)
return self.node_reps[node_id]["examplars"]
def set_node_label_chart(self, node_id):
self.node_reps[node_id]["label_chart"] = self.node_reps[node_id].get(
"label_chart",
px.pie(
values=[ct for lab, ct in self.node_list[node_id]["label_counts"]],
names=[
f"Label {lab}"
for lab, ct in self.node_list[node_id]["label_counts"]
],
color_discrete_sequence=px.colors.sequential.Rainbow,
width=400,
height=400,
),
)
def get_node_label_chart(self, node_id):
self.set_node_label_chart(node_id)
return self.node_reps[node_id]["label_chart"]