Spaces:
Runtime error
Runtime error
Commit
·
cf57696
1
Parent(s):
c893d6c
discord bot fix
Browse files- .gitignore +2 -1
- Dockerfile.api → Dockerfile +6 -5
- Dockerfile.bot +0 -17
- app.py +12 -2
- benchmark/__main__.py +76 -0
- benchmark/questions.json +38 -0
- benchmarker.py +0 -63
- data/benchmark/.gitkeep +0 -0
- data/indexing_benchmark.ipynb +387 -0
- docker-compose.yml +0 -23
- models/inference.ipynb +0 -103
- qa_engine/mocks.py +5 -19
- qa_engine/qa_engine.py +4 -0
- questions.txt +0 -9
- requirements.txt +1 -1
- run_docker.sh +2 -1
.gitignore
CHANGED
|
@@ -64,5 +64,6 @@ data/datasets/*
|
|
| 64 |
!data/datasets/hf_repositories_urls.json
|
| 65 |
!data/datasets/hf_repositories_urls_scraped.json
|
| 66 |
|
| 67 |
-
#
|
| 68 |
qa_engine/local_models
|
|
|
|
|
|
| 64 |
!data/datasets/hf_repositories_urls.json
|
| 65 |
!data/datasets/hf_repositories_urls_scraped.json
|
| 66 |
|
| 67 |
+
# Models and inference scripts
|
| 68 |
qa_engine/local_models
|
| 69 |
+
models/
|
Dockerfile.api → Dockerfile
RENAMED
|
@@ -1,19 +1,20 @@
|
|
| 1 |
-
FROM
|
| 2 |
|
| 3 |
ENV DEBIAN_FRONTEND=noninteractive
|
| 4 |
|
| 5 |
RUN apt-get -y update && \
|
| 6 |
apt-get -y upgrade && \
|
| 7 |
-
apt-get -y install git python3.
|
| 8 |
|
| 9 |
COPY requirements.txt .
|
| 10 |
RUN pip install --upgrade pip && \
|
| 11 |
pip install --no-cache-dir -r requirements.txt
|
| 12 |
|
| 13 |
WORKDIR /hugging-face-qa-bot
|
| 14 |
-
COPY
|
| 15 |
-
COPY api/ api/
|
| 16 |
|
|
|
|
| 17 |
EXPOSE 8000
|
| 18 |
|
| 19 |
-
ENTRYPOINT [ "python3", "-m", "api" ]
|
|
|
|
|
|
| 1 |
+
FROM debian:bullseye-slim
|
| 2 |
|
| 3 |
ENV DEBIAN_FRONTEND=noninteractive
|
| 4 |
|
| 5 |
RUN apt-get -y update && \
|
| 6 |
apt-get -y upgrade && \
|
| 7 |
+
apt-get -y install git python3.11 python3-pip
|
| 8 |
|
| 9 |
COPY requirements.txt .
|
| 10 |
RUN pip install --upgrade pip && \
|
| 11 |
pip install --no-cache-dir -r requirements.txt
|
| 12 |
|
| 13 |
WORKDIR /hugging-face-qa-bot
|
| 14 |
+
COPY . .
|
|
|
|
| 15 |
|
| 16 |
+
RUN ls -la
|
| 17 |
EXPOSE 8000
|
| 18 |
|
| 19 |
+
ENTRYPOINT [ "python3", "-m", "api" ] # to run the api module
|
| 20 |
+
# ENTRYPOINT [ "python3", "-m", "discord_bot" ] # to host the bot
|
Dockerfile.bot
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
FROM ubuntu:latest
|
| 2 |
-
|
| 3 |
-
ENV DEBIAN_FRONTEND=noninteractive
|
| 4 |
-
|
| 5 |
-
RUN apt-get -y update && \
|
| 6 |
-
apt-get -y upgrade && \
|
| 7 |
-
apt-get -y install git python3.10 python3-pip
|
| 8 |
-
|
| 9 |
-
COPY requirements.txt .
|
| 10 |
-
RUN pip install --upgrade pip && \
|
| 11 |
-
pip install --no-cache-dir -r requirements.txt
|
| 12 |
-
|
| 13 |
-
WORKDIR /hugging-face-qa-bot
|
| 14 |
-
COPY config/bot/ config/bot/
|
| 15 |
-
COPY bot/ bot/
|
| 16 |
-
|
| 17 |
-
ENTRYPOINT [ "python3", "-m", "bot" ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,9 +1,12 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
from qa_engine import logger, Config, QAEngine
|
| 4 |
from discord_bot import DiscordClient
|
| 5 |
|
| 6 |
|
|
|
|
| 7 |
config = Config()
|
| 8 |
qa_engine = QAEngine(
|
| 9 |
llm_model_id=config.question_answering_model_id,
|
|
@@ -35,7 +38,7 @@ def gradio_interface():
|
|
| 35 |
demo.launch(share=True)
|
| 36 |
|
| 37 |
|
| 38 |
-
def
|
| 39 |
client = DiscordClient(
|
| 40 |
qa_engine=qa_engine,
|
| 41 |
num_last_messages=config.num_last_messages,
|
|
@@ -43,9 +46,16 @@ def discord_bot():
|
|
| 43 |
enable_commands=config.enable_commands,
|
| 44 |
debug=config.debug
|
| 45 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
with gr.Blocks() as demo:
|
| 47 |
gr.Markdown(f'Discord bot is running.')
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
if __name__ == '__main__':
|
|
|
|
| 1 |
+
import threading
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
from qa_engine import logger, Config, QAEngine
|
| 6 |
from discord_bot import DiscordClient
|
| 7 |
|
| 8 |
|
| 9 |
+
|
| 10 |
config = Config()
|
| 11 |
qa_engine = QAEngine(
|
| 12 |
llm_model_id=config.question_answering_model_id,
|
|
|
|
| 38 |
demo.launch(share=True)
|
| 39 |
|
| 40 |
|
| 41 |
+
def discord_bot_inference_thread():
|
| 42 |
client = DiscordClient(
|
| 43 |
qa_engine=qa_engine,
|
| 44 |
num_last_messages=config.num_last_messages,
|
|
|
|
| 46 |
enable_commands=config.enable_commands,
|
| 47 |
debug=config.debug
|
| 48 |
)
|
| 49 |
+
client.run(config.discord_token)
|
| 50 |
+
|
| 51 |
+
def discord_bot():
|
| 52 |
+
thread = threading.Thread(target=discord_bot_inference_thread)
|
| 53 |
+
thread.start()
|
| 54 |
with gr.Blocks() as demo:
|
| 55 |
gr.Markdown(f'Discord bot is running.')
|
| 56 |
+
demo.queue(concurrency_count=100)
|
| 57 |
+
demo.queue(max_size=100)
|
| 58 |
+
demo.launch()
|
| 59 |
|
| 60 |
|
| 61 |
if __name__ == '__main__':
|
benchmark/__main__.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
import wandb
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from qa_engine import logger, Config, QAEngine
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
QUESTIONS_FILENAME = 'benchmark/questions.json'
|
| 11 |
+
|
| 12 |
+
config = Config()
|
| 13 |
+
qa_engine = QAEngine(
|
| 14 |
+
llm_model_id=config.question_answering_model_id,
|
| 15 |
+
embedding_model_id=config.embedding_model_id,
|
| 16 |
+
index_repo_id=config.index_repo_id,
|
| 17 |
+
prompt_template=config.prompt_template,
|
| 18 |
+
use_docs_for_context=config.use_docs_for_context,
|
| 19 |
+
add_sources_to_response=config.add_sources_to_response,
|
| 20 |
+
use_messages_for_context=config.use_messages_in_context,
|
| 21 |
+
debug=config.debug
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def main():
|
| 26 |
+
filtered_config = config.asdict()
|
| 27 |
+
disallowed_config_keys = [
|
| 28 |
+
"DISCORD_TOKEN", "NUM_LAST_MESSAGES", "USE_NAMES_IN_CONTEXT",
|
| 29 |
+
"ENABLE_COMMANDS", "APP_MODE", "DEBUG"
|
| 30 |
+
]
|
| 31 |
+
for key in disallowed_config_keys:
|
| 32 |
+
filtered_config.pop(key, None)
|
| 33 |
+
|
| 34 |
+
wandb.init(
|
| 35 |
+
project='HF-Docs-QA',
|
| 36 |
+
name=f'{config.question_answering_model_id} - {config.embedding_model_id} - {config.index_repo_id}',
|
| 37 |
+
mode='run', # run/disabled
|
| 38 |
+
config=filtered_config
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
with open(QUESTIONS_FILENAME, 'r') as f:
|
| 42 |
+
questions = json.load(f)
|
| 43 |
+
|
| 44 |
+
table = wandb.Table(
|
| 45 |
+
columns=[
|
| 46 |
+
"id", "question", "messages_context", "answer", "sources", "time"
|
| 47 |
+
]
|
| 48 |
+
)
|
| 49 |
+
for i, q in enumerate(questions):
|
| 50 |
+
logger.info(f"Question {i+1}/{len(questions)}")
|
| 51 |
+
|
| 52 |
+
question = q['question']
|
| 53 |
+
messages_context = q['messages_context']
|
| 54 |
+
|
| 55 |
+
time_start = time.perf_counter()
|
| 56 |
+
response = qa_engine.get_response(
|
| 57 |
+
question=question,
|
| 58 |
+
messages_context=messages_context
|
| 59 |
+
)
|
| 60 |
+
time_end = time.perf_counter()
|
| 61 |
+
|
| 62 |
+
table.add_data(
|
| 63 |
+
i,
|
| 64 |
+
question,
|
| 65 |
+
messages_context,
|
| 66 |
+
response.get_answer(),
|
| 67 |
+
response.get_sources_as_text(),
|
| 68 |
+
time_end - time_start
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
wandb.log({"answers": table})
|
| 72 |
+
wandb.finish()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
if __name__ == '__main__':
|
| 76 |
+
main()
|
benchmark/questions.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"question": "How to create audio dataset with Hugging Face?",
|
| 4 |
+
"messages_context": " "
|
| 5 |
+
},
|
| 6 |
+
{
|
| 7 |
+
"question": "I want to check if 2 sentences are similar semantically. How can I do it?",
|
| 8 |
+
"messages_context": " "
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"question": "What are the benefits of Gradio?",
|
| 12 |
+
"messages_context": " "
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"question": "How to deploy a text-to-image model?",
|
| 16 |
+
"messages_context": " "
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"question": "Does Hugging Face offer any distributed training assistance? followup: Can you give me an example setup of it?",
|
| 20 |
+
"messages_context": " "
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"question": "I want to detect cars on video recording. How should I do it and what models do you recommend?",
|
| 24 |
+
"messages_context": " "
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"question": "Is there any tool for evaluating models in Hugging Face? followup: Can you give me an example setup of it?",
|
| 28 |
+
"messages_context": " "
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"question": "What are some advantages of the Hugging Face Hub?",
|
| 32 |
+
"messages_context": " "
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"question": "How would I use a model in 8 bit in transformers?",
|
| 36 |
+
"messages_context": " "
|
| 37 |
+
}
|
| 38 |
+
]
|
benchmarker.py
DELETED
|
@@ -1,63 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from dotenv import load_dotenv
|
| 3 |
-
from api.config import Config
|
| 4 |
-
from api.logger import logger
|
| 5 |
-
from api.question_answering import QAModel
|
| 6 |
-
import time
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
load_dotenv(dotenv_path='config/api/.env')
|
| 10 |
-
|
| 11 |
-
config = Config()
|
| 12 |
-
model = QAModel(
|
| 13 |
-
llm_model_id=config.question_answering_model_id,
|
| 14 |
-
embedding_model_id=config.embedding_model_id,
|
| 15 |
-
index_repo_id=config.index_repo_id,
|
| 16 |
-
prompt_template=config.prompt_template,
|
| 17 |
-
use_docs_for_context=config.use_docs_for_context,
|
| 18 |
-
add_sources_to_response=config.add_sources_to_response,
|
| 19 |
-
use_messages_for_context=config.use_messages_in_context,
|
| 20 |
-
debug=config.debug
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
QUESTIONS_FILENAME = 'data/benchmark/questions.json'
|
| 24 |
-
ANSWERS_FILENAME = 'data/benchmark/answers.json'
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def main():
|
| 28 |
-
benchmark_name = \
|
| 29 |
-
f'model: {config.question_answering_model_id}' \
|
| 30 |
-
f'index: {config.index_repo_id}'
|
| 31 |
-
|
| 32 |
-
wandb.init(
|
| 33 |
-
project='HF-Docs-QA',
|
| 34 |
-
name=f'model: {config.question_answering_model_id}',
|
| 35 |
-
mode='run', # run/disabled
|
| 36 |
-
config=config.asdict()
|
| 37 |
-
)
|
| 38 |
-
# log config to wandb
|
| 39 |
-
|
| 40 |
-
with open(QUESTIONS_FILENAME, 'r') as f: # json
|
| 41 |
-
questions = f.readlines()
|
| 42 |
-
|
| 43 |
-
with open(ANSWERS_FILENAME, 'w') as f:
|
| 44 |
-
for q in questions:
|
| 45 |
-
question = q['question']
|
| 46 |
-
messages_contex = q['messages_context']
|
| 47 |
-
|
| 48 |
-
t_start = time.perf_counter()
|
| 49 |
-
response = model.get_response(
|
| 50 |
-
question=question,
|
| 51 |
-
messages_context=messages_context
|
| 52 |
-
)
|
| 53 |
-
t_end = time.perf_counter()
|
| 54 |
-
# write to json
|
| 55 |
-
{
|
| 56 |
-
"answer": response.get_answer(),
|
| 57 |
-
"sources": response.get_sources_as_text(),
|
| 58 |
-
'time': t_end - t_start
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
if __name__ == '__main__':
|
| 63 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/benchmark/.gitkeep
DELETED
|
File without changes
|
data/indexing_benchmark.ipynb
ADDED
|
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 37,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import math\n",
|
| 10 |
+
"import numpy as np\n",
|
| 11 |
+
"from pathlib import Path\n",
|
| 12 |
+
"from typing import List, Union, Any\n",
|
| 13 |
+
"from tqdm import tqdm\n",
|
| 14 |
+
"from sentence_transformers import CrossEncoder\n",
|
| 15 |
+
"from langchain.chains import RetrievalQA\n",
|
| 16 |
+
"from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings\n",
|
| 17 |
+
"from langchain.document_loaders import TextLoader\n",
|
| 18 |
+
"from langchain.indexes import VectorstoreIndexCreator\n",
|
| 19 |
+
"from langchain.text_splitter import CharacterTextSplitter\n",
|
| 20 |
+
"from langchain.vectorstores import FAISS\n",
|
| 21 |
+
"from sentence_transformers import CrossEncoder"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 31,
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [],
|
| 29 |
+
"source": [
|
| 30 |
+
"class AverageInstructEmbeddings(HuggingFaceInstructEmbeddings):\n",
|
| 31 |
+
" max_length: int = None\n",
|
| 32 |
+
" def __init__(self, max_length: int = 512, **kwargs: Any):\n",
|
| 33 |
+
" super().__init__(**kwargs)\n",
|
| 34 |
+
" self.max_length = max_length\n",
|
| 35 |
+
" if self.max_length < 0:\n",
|
| 36 |
+
" print('max_length is not specified, using model default max_seq_length')\n",
|
| 37 |
+
"\n",
|
| 38 |
+
" def embed_documents(self, texts: List[str]) -> List[List[float]]:\n",
|
| 39 |
+
" all_embeddings = []\n",
|
| 40 |
+
" for text in tqdm(texts, desc=\"Embedding documents\"):\n",
|
| 41 |
+
" if len(text) > self.max_length and self.max_length > -1:\n",
|
| 42 |
+
" n_chunks = math.ceil(len(text)/self.max_length)\n",
|
| 43 |
+
" chunks = [\n",
|
| 44 |
+
" text[i*self.max_length:(i+1)*self.max_length]\n",
|
| 45 |
+
" for i in range(n_chunks)\n",
|
| 46 |
+
" ]\n",
|
| 47 |
+
" instruction_pairs = [[self.embed_instruction, chunk] for chunk in chunks]\n",
|
| 48 |
+
" chunk_embeddings = self.client.encode(instruction_pairs)\n",
|
| 49 |
+
" avg_embedding = np.mean(chunk_embeddings, axis=0)\n",
|
| 50 |
+
" all_embeddings.append(avg_embedding.tolist())\n",
|
| 51 |
+
" else:\n",
|
| 52 |
+
" instruction_pairs = [[self.embed_instruction, text]]\n",
|
| 53 |
+
" embeddings = self.client.encode(instruction_pairs)\n",
|
| 54 |
+
" all_embeddings.append(embeddings[0].tolist())\n",
|
| 55 |
+
"\n",
|
| 56 |
+
" return all_embeddings\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"class BenchDataST:\n",
|
| 60 |
+
" def __init__(self, path: str, percentage: float = 0.005, chunk_size: int = 512, chunk_overlap: int = 100):\n",
|
| 61 |
+
" self.path = path\n",
|
| 62 |
+
" self.percentage = percentage\n",
|
| 63 |
+
" self.docs = []\n",
|
| 64 |
+
" self.metadata = []\n",
|
| 65 |
+
" self.load()\n",
|
| 66 |
+
" self.text_splitter = CharacterTextSplitter(separator=\"\", chunk_size=chunk_size, chunk_overlap=chunk_overlap)\n",
|
| 67 |
+
" self.docs_processed = self.text_splitter.create_documents(self.docs, self.metadata)\n",
|
| 68 |
+
"\n",
|
| 69 |
+
" def load(self):\n",
|
| 70 |
+
" for p in Path(self.path).iterdir():\n",
|
| 71 |
+
" if not p.is_dir():\n",
|
| 72 |
+
" with open(p) as f:\n",
|
| 73 |
+
" source = f.readline().strip().replace('source: ', '')\n",
|
| 74 |
+
" self.docs.append(f.read())\n",
|
| 75 |
+
" self.metadata.append({\"source\": source})\n",
|
| 76 |
+
" self.docs = self.docs[:int(len(self.docs) * self.percentage)]\n",
|
| 77 |
+
" self.metadata = self.metadata[:int(len(self.metadata) * self.percentage)]\n",
|
| 78 |
+
"\n",
|
| 79 |
+
" def __len__(self):\n",
|
| 80 |
+
" return len(self.docs)\n",
|
| 81 |
+
"\n",
|
| 82 |
+
" def __getitem__(self, idx):\n",
|
| 83 |
+
" return self.docs[idx], self.metadata[idx]\n",
|
| 84 |
+
"\n",
|
| 85 |
+
" def __iter__(self):\n",
|
| 86 |
+
" for doc, metadata in zip(self.docs, self.metadata):\n",
|
| 87 |
+
" yield doc, metadata\n",
|
| 88 |
+
"\n",
|
| 89 |
+
" def __repr__(self):\n",
|
| 90 |
+
" return f'BenchDataST({len(self)} docs) at {self.path} with {self.percentage} percentage \\nSources: {self.metadata} \\nChunks: {self.text_splitter}'\n",
|
| 91 |
+
" \n",
|
| 92 |
+
"\n",
|
| 93 |
+
"class BenchmarkST:\n",
|
| 94 |
+
" def __init__(self, data: BenchDataST, baseline_model: Union[HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, AverageInstructEmbeddings], embedding_models: List[Union[HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, AverageInstructEmbeddings]]):\n",
|
| 95 |
+
" self.data = data\n",
|
| 96 |
+
" self.baseline_model = baseline_model\n",
|
| 97 |
+
" self.embedding_models = embedding_models\n",
|
| 98 |
+
" self.baseline_index, self.indexes = self.build_indexes()\n",
|
| 99 |
+
"\n",
|
| 100 |
+
" def build_indexes(self):\n",
|
| 101 |
+
" indexes = []\n",
|
| 102 |
+
" for model in [self.baseline_model] + self.embedding_models:\n",
|
| 103 |
+
" print(f\"Building index for {model}\")\n",
|
| 104 |
+
" index = FAISS.from_documents(self.data.docs_processed, model)\n",
|
| 105 |
+
" indexes.append(index)\n",
|
| 106 |
+
" return indexes[0], indexes[1:]\n",
|
| 107 |
+
" \n",
|
| 108 |
+
" def add_index(self, index: FAISS):\n",
|
| 109 |
+
" self.indexes.append(index)\n",
|
| 110 |
+
" \n",
|
| 111 |
+
" def evaluate(self, query: str, k: int = 3):\n",
|
| 112 |
+
" baseline_results = self.baseline_index.similarity_search_with_score(query, k=k)\n",
|
| 113 |
+
" results = []\n",
|
| 114 |
+
" for index in self.indexes:\n",
|
| 115 |
+
" results.append(index.similarity_search_with_score(query, k=k))\n",
|
| 116 |
+
" return baseline_results, results"
|
| 117 |
+
]
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"cell_type": "code",
|
| 121 |
+
"execution_count": 48,
|
| 122 |
+
"metadata": {},
|
| 123 |
+
"outputs": [
|
| 124 |
+
{
|
| 125 |
+
"name": "stdout",
|
| 126 |
+
"output_type": "stream",
|
| 127 |
+
"text": [
|
| 128 |
+
"load INSTRUCTOR_Transformer\n",
|
| 129 |
+
"max_seq_length 512\n"
|
| 130 |
+
]
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"name": "stderr",
|
| 134 |
+
"output_type": "stream",
|
| 135 |
+
"text": [
|
| 136 |
+
"No sentence-transformers model found with name /Users/michalwilinski/.cache/torch/sentence_transformers/cross-encoder_ms-marco-MiniLM-L-12-v2. Creating a new one with MEAN pooling.\n",
|
| 137 |
+
"Some weights of the model checkpoint at /Users/michalwilinski/.cache/torch/sentence_transformers/cross-encoder_ms-marco-MiniLM-L-12-v2 were not used when initializing BertModel: ['classifier.bias', 'classifier.weight']\n",
|
| 138 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 139 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"name": "stdout",
|
| 144 |
+
"output_type": "stream",
|
| 145 |
+
"text": [
|
| 146 |
+
"Building index for client=INSTRUCTOR(\n",
|
| 147 |
+
" (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: T5EncoderModel \n",
|
| 148 |
+
" (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})\n",
|
| 149 |
+
" (2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})\n",
|
| 150 |
+
" (3): Normalize()\n",
|
| 151 |
+
") model_name='hkunlp/instructor-base' cache_folder=None model_kwargs={} encode_kwargs={} embed_instruction='Represent this piece of text for searching relevant information:' query_instruction='Query the most relevant piece of information from the Hugging Face documentation' max_length=512\n"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"name": "stderr",
|
| 156 |
+
"output_type": "stream",
|
| 157 |
+
"text": [
|
| 158 |
+
"Embedding documents: 100%|██████████| 278/278 [00:19<00:00, 14.11it/s]\n"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"name": "stdout",
|
| 163 |
+
"output_type": "stream",
|
| 164 |
+
"text": [
|
| 165 |
+
"Building index for client=SentenceTransformer(\n",
|
| 166 |
+
" (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel \n",
|
| 167 |
+
" (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})\n",
|
| 168 |
+
") model_name='cross-encoder/ms-marco-MiniLM-L-12-v2' cache_folder=None model_kwargs={} encode_kwargs={} multi_process=False\n"
|
| 169 |
+
]
|
| 170 |
+
}
|
| 171 |
+
],
|
| 172 |
+
"source": [
|
| 173 |
+
"data = BenchDataST(\n",
|
| 174 |
+
" path=\"./datasets/huggingface_docs/\",\n",
|
| 175 |
+
" percentage=0.005,\n",
|
| 176 |
+
" chunk_size=512,\n",
|
| 177 |
+
" chunk_overlap=100\n",
|
| 178 |
+
")\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"baseline_embedding_model = AverageInstructEmbeddings(\n",
|
| 181 |
+
" model_name=\"hkunlp/instructor-base\",\n",
|
| 182 |
+
" embed_instruction=\"Represent this piece of text for searching relevant information:\",\n",
|
| 183 |
+
" query_instruction=\"Query the most relevant piece of information from the Hugging Face documentation\",\n",
|
| 184 |
+
" max_length=512,\n",
|
| 185 |
+
")\n",
|
| 186 |
+
"\n",
|
| 187 |
+
"embedding_model = HuggingFaceEmbeddings(\n",
|
| 188 |
+
" model_name=\"intfloat/e5-large-v2\",\n",
|
| 189 |
+
")\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"cross_encoder = HuggingFaceEmbeddings(model_name=\"cross-encoder/ms-marco-MiniLM-L-12-v2\")\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"benchmark = BenchmarkST(\n",
|
| 194 |
+
" data=data,\n",
|
| 195 |
+
" baseline_model=baseline_embedding_model,\n",
|
| 196 |
+
" embedding_models=[cross_encoder]\n",
|
| 197 |
+
")"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"cell_type": "code",
|
| 202 |
+
"execution_count": 54,
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [
|
| 205 |
+
{
|
| 206 |
+
"name": "stdout",
|
| 207 |
+
"output_type": "stream",
|
| 208 |
+
"text": [
|
| 209 |
+
"Baseline results:\n",
|
| 210 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.23610792\n",
|
| 211 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.24087097\n",
|
| 212 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.24181677\n",
|
| 213 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.24541612\n",
|
| 214 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.24639006\n",
|
| 215 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.24780047\n",
|
| 216 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.2535807\n",
|
| 217 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.25887597\n",
|
| 218 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.27293646\n",
|
| 219 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.27374876\n",
|
| 220 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.27710187\n",
|
| 221 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.28146794\n",
|
| 222 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.29536068\n",
|
| 223 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.29784447\n",
|
| 224 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.30452335\n",
|
| 225 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.3061711\n",
|
| 226 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.31600478\n",
|
| 227 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.3166225\n",
|
| 228 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.33345556\n",
|
| 229 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.3469957\n",
|
| 230 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.35222226\n",
|
| 231 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.36451602\n",
|
| 232 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.36925688\n",
|
| 233 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 0.37025565\n",
|
| 234 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/README.md'} 0.37112093\n",
|
| 235 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.37146708\n",
|
| 236 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.3766507\n",
|
| 237 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.37794292\n",
|
| 238 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.37923962\n",
|
| 239 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.38359642\n",
|
| 240 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.3878625\n",
|
| 241 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.39796114\n",
|
| 242 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.40057343\n",
|
| 243 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.40114868\n",
|
| 244 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.40156174\n",
|
| 245 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.40341228\n",
|
| 246 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/README.md'} 0.40720195\n",
|
| 247 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.41241395\n",
|
| 248 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.4134417\n",
|
| 249 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.4134435\n",
|
| 250 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.41754264\n",
|
| 251 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.41917825\n",
|
| 252 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.41928726\n",
|
| 253 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.41988587\n",
|
| 254 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.42029166\n",
|
| 255 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.42128915\n",
|
| 256 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.4226097\n",
|
| 257 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.42302307\n",
|
| 258 |
+
"{'source': 'https://github.com/gradio-app/gradio/blob/main/demo/stt_or_tts/run.ipynb'} 0.4252566\n",
|
| 259 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/README.md'} 0.42704937\n",
|
| 260 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.4297651\n",
|
| 261 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.43067485\n",
|
| 262 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.43116528\n",
|
| 263 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/bloom.md'} 0.43272027\n",
|
| 264 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/README_sdxl.md'} 0.43434155\n",
|
| 265 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.43486434\n",
|
| 266 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.43524152\n",
|
| 267 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.43530554\n",
|
| 268 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.4371896\n",
|
| 269 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.43753576\n",
|
| 270 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.43824\n",
|
| 271 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.4384127\n",
|
| 272 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.43900505\n",
|
| 273 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.43903238\n",
|
| 274 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/accelerate-deepspeed.md'} 0.44034868\n",
|
| 275 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.44217598\n",
|
| 276 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/docs/source/en/api/schedulers/euler_ancestral.md'} 0.4426194\n",
|
| 277 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.44303834\n",
|
| 278 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/README_sdxl.md'} 0.4452571\n",
|
| 279 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.44619536\n",
|
| 280 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.44652176\n",
|
| 281 |
+
"{'source': 'https://github.com/gradio-app/gradio/blob/main/demo/stt_or_tts/run.ipynb'} 0.44683564\n",
|
| 282 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/accelerate-deepspeed.md'} 0.44743723\n",
|
| 283 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.44768596\n",
|
| 284 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.4477852\n",
|
| 285 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.44906363\n",
|
| 286 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.45155957\n",
|
| 287 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.45215163\n",
|
| 288 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.45415214\n",
|
| 289 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.4541726\n",
|
| 290 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/README_sdxl.md'} 0.4542602\n",
|
| 291 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/accelerate-deepspeed.md'} 0.4544394\n",
|
| 292 |
+
"{'source': 'https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/open-llama.md'} 0.45448524\n",
|
| 293 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.454512\n",
|
| 294 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.45478693\n",
|
| 295 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/docs/source/en/api/schedulers/euler_ancestral.md'} 0.45494407\n",
|
| 296 |
+
"{'source': 'https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/open-llama.md'} 0.45494407\n",
|
| 297 |
+
"{'source': 'https://github.com/gradio-app/gradio/blob/main/js/accordion/CHANGELOG.md'} 0.45520714\n",
|
| 298 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.4559689\n",
|
| 299 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/bloom.md'} 0.4568352\n",
|
| 300 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.4577096\n",
|
| 301 |
+
"{'source': 'https://github.com/huggingface/simulate/blob/main/docs/source/api/lights.mdx'} 0.4577096\n",
|
| 302 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/README_sdxl.md'} 0.45773098\n",
|
| 303 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/bloom.md'} 0.45818624\n",
|
| 304 |
+
"{'source': 'https://github.com/huggingface/optimum/blob/main/docs/source/exporters/onnx/usage_guides/export_a_model.mdx'} 0.45871085\n",
|
| 305 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/bloom.md'} 0.4591412\n",
|
| 306 |
+
"{'source': 'https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/README_sdxl.md'} 0.46033093\n",
|
| 307 |
+
"{'source': 'https://github.com/huggingface/blog/blob/main/accelerate-deepspeed.md'} 0.4605264\n",
|
| 308 |
+
"{'source': 'https://github.com/huggingface/pytorch-image-models/blob/main/docs/changes.md'} 0.46091354\n",
|
| 309 |
+
"{'source': 'https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/open-llama.md'} 0.46182537\n",
|
| 310 |
+
"Cross encoder results:\n",
|
| 311 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} 6.840022\n",
|
| 312 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} -0.98426485\n",
|
| 313 |
+
"{'source': 'https://github.com/huggingface/course/blob/main/chapters/en/chapter6/4.mdx'} -1.9345549\n",
|
| 314 |
+
"bye\n"
|
| 315 |
+
]
|
| 316 |
+
}
|
| 317 |
+
],
|
| 318 |
+
"source": [
|
| 319 |
+
"query = \"textual inversion\"\n",
|
| 320 |
+
"k = 100\n",
|
| 321 |
+
"baseline_results, results = benchmark.evaluate(query=query, k=k)\n",
|
| 322 |
+
"print(\"Baseline results:\")\n",
|
| 323 |
+
"[print(doc.metadata,score) for (doc,score) in baseline_results]\n",
|
| 324 |
+
"cross_encoder = CrossEncoder(\"cross-encoder/ms-marco-MiniLM-L-12-v2\")\n",
|
| 325 |
+
"cross_encoder_results = cross_encoder.predict([(query, doc.page_content) for doc in data.docs_processed])\n",
|
| 326 |
+
"# rerank results\n",
|
| 327 |
+
"cross_encoder_results = sorted(zip(data.docs_processed, cross_encoder_results), key=lambda x: x[1], reverse=True)\n",
|
| 328 |
+
"print(\"Cross encoder results:\")\n",
|
| 329 |
+
"final_results = cross_encoder_results[:3]\n",
|
| 330 |
+
"[print(doc.metadata, score) for (doc,score) in final_results]\n",
|
| 331 |
+
"print(\"bye\")"
|
| 332 |
+
]
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"cell_type": "code",
|
| 336 |
+
"execution_count": 55,
|
| 337 |
+
"metadata": {},
|
| 338 |
+
"outputs": [
|
| 339 |
+
{
|
| 340 |
+
"name": "stdout",
|
| 341 |
+
"output_type": "stream",
|
| 342 |
+
"text": [
|
| 343 |
+
"es where the space character is not used (like Chinese or Japanese).\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"The other main feature of SentencePiece is *reversible tokenization*: since there is no special treatment of spaces, decoding the tokens is done simply by concatenating them and replacing the `_`s with spaces -- this results in the normalized text. As we saw earlier, the BERT tokenizer removes repeating spaces, so its tokenization is not reversible.\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"## Algorithm overview[[algorithm-overview]]\n",
|
| 348 |
+
"\n",
|
| 349 |
+
"In the following sections, we'll dive into t\n"
|
| 350 |
+
]
|
| 351 |
+
}
|
| 352 |
+
],
|
| 353 |
+
"source": [
|
| 354 |
+
"print(final_results[0][0].page_content)"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"cell_type": "code",
|
| 359 |
+
"execution_count": null,
|
| 360 |
+
"metadata": {},
|
| 361 |
+
"outputs": [],
|
| 362 |
+
"source": []
|
| 363 |
+
}
|
| 364 |
+
],
|
| 365 |
+
"metadata": {
|
| 366 |
+
"kernelspec": {
|
| 367 |
+
"display_name": "hf_qa_bot",
|
| 368 |
+
"language": "python",
|
| 369 |
+
"name": "python3"
|
| 370 |
+
},
|
| 371 |
+
"language_info": {
|
| 372 |
+
"codemirror_mode": {
|
| 373 |
+
"name": "ipython",
|
| 374 |
+
"version": 3
|
| 375 |
+
},
|
| 376 |
+
"file_extension": ".py",
|
| 377 |
+
"mimetype": "text/x-python",
|
| 378 |
+
"name": "python",
|
| 379 |
+
"nbconvert_exporter": "python",
|
| 380 |
+
"pygments_lexer": "ipython3",
|
| 381 |
+
"version": "3.11.3"
|
| 382 |
+
},
|
| 383 |
+
"orig_nbformat": 4
|
| 384 |
+
},
|
| 385 |
+
"nbformat": 4,
|
| 386 |
+
"nbformat_minor": 2
|
| 387 |
+
}
|
docker-compose.yml
DELETED
|
@@ -1,23 +0,0 @@
|
|
| 1 |
-
version: '3'
|
| 2 |
-
services:
|
| 3 |
-
api:
|
| 4 |
-
build:
|
| 5 |
-
context: .
|
| 6 |
-
dockerfile: Dockerfile.api
|
| 7 |
-
ports:
|
| 8 |
-
- 8000:8000
|
| 9 |
-
networks:
|
| 10 |
-
- mynetwork
|
| 11 |
-
bot:
|
| 12 |
-
build:
|
| 13 |
-
context: .
|
| 14 |
-
dockerfile: Dockerfile.bot
|
| 15 |
-
ports:
|
| 16 |
-
- 80:80
|
| 17 |
-
depends_on:
|
| 18 |
-
- api
|
| 19 |
-
networks:
|
| 20 |
-
- mynetwork
|
| 21 |
-
networks:
|
| 22 |
-
mynetwork:
|
| 23 |
-
driver: bridge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/inference.ipynb
DELETED
|
@@ -1,103 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"import os\n",
|
| 10 |
-
"import torch\n",
|
| 11 |
-
"import transformers\n",
|
| 12 |
-
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
| 13 |
-
"\n",
|
| 14 |
-
"PROMPT_TEMPLATES_DIR = os.path.dirname(os.path.abspath(os.getcwd()))\n",
|
| 15 |
-
"PROMPT_TEMPLATES_DIR += '/config/api/prompt_templates/'\n",
|
| 16 |
-
"\n",
|
| 17 |
-
"os.environ['CUDA_VISIBLE_DEVICES'] = '0'"
|
| 18 |
-
]
|
| 19 |
-
},
|
| 20 |
-
{
|
| 21 |
-
"cell_type": "code",
|
| 22 |
-
"execution_count": null,
|
| 23 |
-
"metadata": {},
|
| 24 |
-
"outputs": [],
|
| 25 |
-
"source": [
|
| 26 |
-
"prompt_template = 'sythia_v1.3'\n",
|
| 27 |
-
"with open(PROMPT_TEMPLATES_DIR + f'{prompt_template}.txt', 'r') as f:\n",
|
| 28 |
-
" prompt_template = f.read()\n",
|
| 29 |
-
"\n",
|
| 30 |
-
"context = ''\n",
|
| 31 |
-
"question = 'How to fix a bike?'\n",
|
| 32 |
-
"\n",
|
| 33 |
-
"prompt = prompt_template.format(context=context, question=question)\n",
|
| 34 |
-
"print(f'prompt len: {len(prompt)}\\n')\n",
|
| 35 |
-
"print(prompt)"
|
| 36 |
-
]
|
| 37 |
-
},
|
| 38 |
-
{
|
| 39 |
-
"cell_type": "code",
|
| 40 |
-
"execution_count": null,
|
| 41 |
-
"metadata": {},
|
| 42 |
-
"outputs": [],
|
| 43 |
-
"source": [
|
| 44 |
-
"model_id = 'migtissera/SynthIA-7B-v1.3'\n",
|
| 45 |
-
"\n",
|
| 46 |
-
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
| 47 |
-
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 48 |
-
" model_id,\n",
|
| 49 |
-
" torch_dtype=torch.bfloat16,\n",
|
| 50 |
-
" trust_remote_code=True,\n",
|
| 51 |
-
" load_in_8bit=False,\n",
|
| 52 |
-
" device_map='auto',\n",
|
| 53 |
-
" resume_download=True,\n",
|
| 54 |
-
")\n",
|
| 55 |
-
"\n",
|
| 56 |
-
"pipeline = transformers.pipeline(\n",
|
| 57 |
-
" 'text-generation',\n",
|
| 58 |
-
" model=model,\n",
|
| 59 |
-
" tokenizer=tokenizer,\n",
|
| 60 |
-
" device_map='auto',\n",
|
| 61 |
-
" torch_dtype=torch.bfloat16,\n",
|
| 62 |
-
" eos_token_id=tokenizer.eos_token_id,\n",
|
| 63 |
-
" pad_token_id=tokenizer.eos_token_id,\n",
|
| 64 |
-
" min_new_tokens=64,\n",
|
| 65 |
-
" max_new_tokens=800,\n",
|
| 66 |
-
" temperature=0.5,\n",
|
| 67 |
-
" do_sample=True,\n",
|
| 68 |
-
")\n",
|
| 69 |
-
"\n",
|
| 70 |
-
"output_text = pipeline(prompt)[0]['generated_text']\n",
|
| 71 |
-
"output_text = output_text.replace(prompt+'\\n', '')\n",
|
| 72 |
-
"print(output_text)"
|
| 73 |
-
]
|
| 74 |
-
}
|
| 75 |
-
],
|
| 76 |
-
"metadata": {
|
| 77 |
-
"kernelspec": {
|
| 78 |
-
"display_name": "hf_qa_bot",
|
| 79 |
-
"language": "python",
|
| 80 |
-
"name": "python3"
|
| 81 |
-
},
|
| 82 |
-
"language_info": {
|
| 83 |
-
"codemirror_mode": {
|
| 84 |
-
"name": "ipython",
|
| 85 |
-
"version": 3
|
| 86 |
-
},
|
| 87 |
-
"file_extension": ".py",
|
| 88 |
-
"mimetype": "text/x-python",
|
| 89 |
-
"name": "python",
|
| 90 |
-
"nbconvert_exporter": "python",
|
| 91 |
-
"pygments_lexer": "ipython3",
|
| 92 |
-
"version": "3.11.5"
|
| 93 |
-
},
|
| 94 |
-
"orig_nbformat": 4,
|
| 95 |
-
"vscode": {
|
| 96 |
-
"interpreter": {
|
| 97 |
-
"hash": "e769ac600d1c65682759767682b2a946c0eaa09d353302f712fe4c2e822e15df"
|
| 98 |
-
}
|
| 99 |
-
}
|
| 100 |
-
},
|
| 101 |
-
"nbformat": 4,
|
| 102 |
-
"nbformat_minor": 2
|
| 103 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qa_engine/mocks.py
CHANGED
|
@@ -6,36 +6,22 @@ from langchain.llms.base import LLM
|
|
| 6 |
|
| 7 |
class MockLocalBinaryModel(LLM):
|
| 8 |
"""
|
| 9 |
-
Mock Local Binary Model class
|
| 10 |
-
|
| 11 |
-
Args:
|
| 12 |
-
model_id (str): The ID of the model to be mocked.
|
| 13 |
-
|
| 14 |
-
Attributes:
|
| 15 |
-
model_path (str): The path to the model to be mocked.
|
| 16 |
-
llm (str): The string "a".
|
| 17 |
-
|
| 18 |
-
Raises:
|
| 19 |
-
ValueError: If the model_path does not exist.
|
| 20 |
"""
|
| 21 |
|
| 22 |
model_path: str = None
|
| 23 |
-
llm: str = '
|
| 24 |
|
| 25 |
-
def __init__(self
|
| 26 |
super().__init__()
|
| 27 |
-
self.model_path = f'bot/question_answering/{model_id}'
|
| 28 |
-
if not os.path.exists(self.model_path):
|
| 29 |
-
raise ValueError(f'{self.model_path} does not exist')
|
| 30 |
-
|
| 31 |
|
| 32 |
def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str:
|
| 33 |
return self.llm
|
| 34 |
|
| 35 |
@property
|
| 36 |
def _identifying_params(self) -> Mapping[str, Any]:
|
| 37 |
-
return {'name_of_model':
|
| 38 |
|
| 39 |
@property
|
| 40 |
def _llm_type(self) -> str:
|
| 41 |
-
return
|
|
|
|
| 6 |
|
| 7 |
class MockLocalBinaryModel(LLM):
|
| 8 |
"""
|
| 9 |
+
Mock Local Binary Model class.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
"""
|
| 11 |
|
| 12 |
model_path: str = None
|
| 13 |
+
llm: str = 'Mocked Response'
|
| 14 |
|
| 15 |
+
def __init__(self):
|
| 16 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def _call(self, prompt: str, stop: Optional[list[str]] = None) -> str:
|
| 19 |
return self.llm
|
| 20 |
|
| 21 |
@property
|
| 22 |
def _identifying_params(self) -> Mapping[str, Any]:
|
| 23 |
+
return {'name_of_model': 'mock'}
|
| 24 |
|
| 25 |
@property
|
| 26 |
def _llm_type(self) -> str:
|
| 27 |
+
return 'mock'
|
qa_engine/qa_engine.py
CHANGED
|
@@ -18,6 +18,7 @@ from sentence_transformers import CrossEncoder
|
|
| 18 |
|
| 19 |
from qa_engine import logger
|
| 20 |
from qa_engine.response import Response
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
class LocalBinaryModel(LLM):
|
|
@@ -191,6 +192,9 @@ class QAEngine():
|
|
| 191 |
model_url=llm_model_id.replace('api_models/', ''),
|
| 192 |
debug=self.debug
|
| 193 |
)
|
|
|
|
|
|
|
|
|
|
| 194 |
else:
|
| 195 |
logger.info('using transformers pipeline model')
|
| 196 |
self.llm_model = TransformersPipelineModel(
|
|
|
|
| 18 |
|
| 19 |
from qa_engine import logger
|
| 20 |
from qa_engine.response import Response
|
| 21 |
+
from qa_engine.mocks import MockLocalBinaryModel
|
| 22 |
|
| 23 |
|
| 24 |
class LocalBinaryModel(LLM):
|
|
|
|
| 192 |
model_url=llm_model_id.replace('api_models/', ''),
|
| 193 |
debug=self.debug
|
| 194 |
)
|
| 195 |
+
elif llm_model_id == 'mock':
|
| 196 |
+
logger.info('using mock model')
|
| 197 |
+
self.llm_model = MockLocalBinaryModel()
|
| 198 |
else:
|
| 199 |
logger.info('using transformers pipeline model')
|
| 200 |
self.llm_model = TransformersPipelineModel(
|
questions.txt
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
How to create audio dataset with Hugging Face?
|
| 2 |
-
I want to check if 2 sentences are similar semantically. How can I do it?
|
| 3 |
-
What are the benefits of Gradio?
|
| 4 |
-
How to deploy a text-to-image model?
|
| 5 |
-
Does Hugging Face offer any distributed training assistance? followup: Can you give me an example setup of it?
|
| 6 |
-
I want to detect cars on video recording. How should I do it and what models do you recommend?
|
| 7 |
-
Is there any tool for evaluating models in Hugging Face? followup: Can you give me an example setup of it?
|
| 8 |
-
What are some advantages of the Hugging Face Hub?
|
| 9 |
-
How would I use a model in 8 bit in transformers?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -5,6 +5,7 @@ accelerate
|
|
| 5 |
einops
|
| 6 |
huggingface_hub
|
| 7 |
gradio
|
|
|
|
| 8 |
beautifulsoup4==4.12.0
|
| 9 |
discord.py==2.2.2
|
| 10 |
evaluate==0.4.0
|
|
@@ -24,5 +25,4 @@ InstructorEmbedding==1.0.0
|
|
| 24 |
faiss_cpu==1.7.3
|
| 25 |
tqdm==4.64.1
|
| 26 |
uvicorn==0.22.0
|
| 27 |
-
wandb==0.15.0
|
| 28 |
pytest==7.3.1
|
|
|
|
| 5 |
einops
|
| 6 |
huggingface_hub
|
| 7 |
gradio
|
| 8 |
+
wandb
|
| 9 |
beautifulsoup4==4.12.0
|
| 10 |
discord.py==2.2.2
|
| 11 |
evaluate==0.4.0
|
|
|
|
| 25 |
faiss_cpu==1.7.3
|
| 26 |
tqdm==4.64.1
|
| 27 |
uvicorn==0.22.0
|
|
|
|
| 28 |
pytest==7.3.1
|
run_docker.sh
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
-
docker
|
|
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
+
docker build -t hf_qa_engine .
|
| 3 |
+
docker run -it hf_qa_engine bash
|