hf-dongpyo commited on
Commit
c2dbaac
1 Parent(s): 8a39aa7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -7
app.py CHANGED
@@ -1,8 +1,13 @@
1
  from transformers import AutoModelWithLMHead, AutoTokenizer
2
  import gradio as grad
3
 
4
- text2text_tkn = AutoTokenizer.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap')
5
- mdl = AutoModelWithLMHead.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap')
 
 
 
 
 
6
 
7
  def text2text(context, answer):
8
  input_text = "answer: %s context: %s </s>" % (answer, context)
@@ -16,11 +21,32 @@ def text2text(context, answer):
16
 
17
  return response
18
 
19
- context = grad.Textbox(lines = 10, label = 'English', placeholder = 'Context')
20
- ans = grad.Textbox(lines = 1, label = 'Answer')
21
- out = grad.Textbox(lines = 1, label = 'Generated Question')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  grad.Interface(
23
- text2text,
24
- inputs = [context, ans],
 
 
25
  outputs = out
26
  ).launch()
 
1
  from transformers import AutoModelWithLMHead, AutoTokenizer
2
  import gradio as grad
3
 
4
+ # make a question
5
+ # text2text_tkn = AutoTokenizer.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap')
6
+ # mdl = AutoModelWithLMHead.from_pretrained('mrm8488/t5-base-finetuned-question-generation-ap')
7
+
8
+ # summarize
9
+ text2text_tkn = AutoTokenizer.from_pretrained('deep-learning-analytics/wikihow-t5-small')
10
+ mdl = AutoModelWithLMHead.from_pretrained('deep-learning-analytics/wikihow-t5-small')
11
 
12
  def text2text(context, answer):
13
  input_text = "answer: %s context: %s </s>" % (answer, context)
 
21
 
22
  return response
23
 
24
+ def text2text_summary(para):
25
+ initial_txt = para.strip().replace("\n", "")
26
+ tkn_text = text2text_tkn.encode(initial_txt, return_tensors = 'pt')
27
+ tkn_ids = mdl.generate(
28
+ tkn_text,
29
+ max_length = 250,
30
+ num_beams = 5,
31
+ repetition_penalty = 2.5,
32
+ early_stopping = True
33
+ )
34
+
35
+ response = text2text_tkn.encode(tkn_ids[0], skip_special_tokens = True)
36
+
37
+ return response
38
+
39
+ # context = grad.Textbox(lines = 10, label = 'English', placeholder = 'Context')
40
+ # ans = grad.Textbox(lines = 1, label = 'Answer')
41
+ # out = grad.Textbox(lines = 1, label = 'Generated Question')
42
+
43
+ para = grad.Textbox(lines = 10, label = 'Paragraph', placeholder = 'Copy paragraph')
44
+ out = grad.Textbox(lines = 1, label = 'Summary')
45
+
46
  grad.Interface(
47
+ # text2text,
48
+ # inputs = [context, ans],
49
+ text2text_summary,
50
+ inputs = para,
51
  outputs = out
52
  ).launch()