Spaces:
Runtime error
Runtime error
Create vocos_bark.py
Browse files- vocos_bark.py +214 -0
vocos_bark.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from vocos import Vocos
|
2 |
+
from typing import Dict, Optional, Tuple, Union
|
3 |
+
|
4 |
+
from transformers.models.bark import BarkSemanticModel, BarkCoarseModel, BarkFineModel, BarkPreTrainedModel
|
5 |
+
from transformers.models.bark.generation_configuration_bark import (
|
6 |
+
BarkCoarseGenerationConfig,
|
7 |
+
BarkFineGenerationConfig,
|
8 |
+
BarkSemanticGenerationConfig,
|
9 |
+
)
|
10 |
+
from transformers import BarkConfig
|
11 |
+
from transformers.modeling_utils import get_parameter_device
|
12 |
+
from transformers.utils import (
|
13 |
+
is_accelerate_available,
|
14 |
+
|
15 |
+
)
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
class BarkModel(BarkPreTrainedModel):
|
20 |
+
config_class = BarkConfig
|
21 |
+
|
22 |
+
def __init__(self, config):
|
23 |
+
super().__init__(config)
|
24 |
+
|
25 |
+
self.semantic = BarkSemanticModel(config.semantic_config)
|
26 |
+
self.coarse_acoustics = BarkCoarseModel(config.coarse_acoustics_config)
|
27 |
+
self.fine_acoustics = BarkFineModel(config.fine_acoustics_config)
|
28 |
+
|
29 |
+
self.vocos = Vocos.from_pretrained("hubertsiuzdak/vocos-encodec-24khz-v2")
|
30 |
+
self.config = config
|
31 |
+
|
32 |
+
@property
|
33 |
+
def device(self) -> torch.device:
|
34 |
+
"""
|
35 |
+
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
|
36 |
+
device).
|
37 |
+
"""
|
38 |
+
# for bark_model, device must be verified on its sub-models
|
39 |
+
# if has _hf_hook, has been offloaded so the device has to be found in the hook
|
40 |
+
if not hasattr(self.semantic, "_hf_hook"):
|
41 |
+
return get_parameter_device(self)
|
42 |
+
for module in self.semantic.modules():
|
43 |
+
if (
|
44 |
+
hasattr(module, "_hf_hook")
|
45 |
+
and hasattr(module._hf_hook, "execution_device")
|
46 |
+
and module._hf_hook.execution_device is not None
|
47 |
+
):
|
48 |
+
return torch.device(module._hf_hook.execution_device)
|
49 |
+
|
50 |
+
def enable_cpu_offload(self, gpu_id: Optional[int] = 0):
|
51 |
+
r"""
|
52 |
+
Offloads all sub-models to CPU using accelerate, reducing memory usage with a low impact on performance. This
|
53 |
+
method moves one whole sub-model at a time to the GPU when it is used, and the sub-model remains in GPU until
|
54 |
+
the next sub-model runs.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
gpu_id (`int`, *optional*, defaults to 0):
|
58 |
+
GPU id on which the sub-models will be loaded and offloaded.
|
59 |
+
"""
|
60 |
+
if is_accelerate_available():
|
61 |
+
from accelerate import cpu_offload_with_hook
|
62 |
+
else:
|
63 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate`.")
|
64 |
+
|
65 |
+
device = torch.device(f"cuda:{gpu_id}")
|
66 |
+
|
67 |
+
if self.device.type != "cpu":
|
68 |
+
self.to("cpu")
|
69 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
70 |
+
|
71 |
+
# this layer is used outside the first foward pass of semantic so need to be loaded before semantic
|
72 |
+
self.semantic.input_embeds_layer, _ = cpu_offload_with_hook(self.semantic.input_embeds_layer, device)
|
73 |
+
|
74 |
+
hook = None
|
75 |
+
for cpu_offloaded_model in [
|
76 |
+
self.semantic,
|
77 |
+
self.coarse_acoustics,
|
78 |
+
self.fine_acoustics,
|
79 |
+
]:
|
80 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
81 |
+
|
82 |
+
self.fine_acoustics_hook = hook
|
83 |
+
|
84 |
+
_, hook = cpu_offload_with_hook(self.vocos, device, prev_module_hook=hook)
|
85 |
+
|
86 |
+
# We'll offload the last model manually.
|
87 |
+
self.codec_model_hook = hook
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
@torch.no_grad()
|
92 |
+
def generate(
|
93 |
+
self,
|
94 |
+
input_ids: Optional[torch.Tensor] = None,
|
95 |
+
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
|
96 |
+
**kwargs,
|
97 |
+
) -> torch.LongTensor:
|
98 |
+
"""
|
99 |
+
Generates audio from an input prompt and an additional optional `Bark` speaker prompt.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
|
103 |
+
Input ids. Will be truncated up to 256 tokens. Note that the output audios will be as long as the
|
104 |
+
longest generation among the batch.
|
105 |
+
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
|
106 |
+
Optional `Bark` speaker prompt. Note that for now, this model takes only one speaker prompt per batch.
|
107 |
+
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments are of two types:
|
108 |
+
|
109 |
+
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model.
|
110 |
+
- With a *semantic_*, *coarse_*, *fine_* prefix, they will be input for the `generate` method of the
|
111 |
+
semantic, coarse and fine respectively. It has the priority over the keywords without a prefix.
|
112 |
+
|
113 |
+
This means you can, for example, specify a generation strategy for all sub-models except one.
|
114 |
+
Returns:
|
115 |
+
torch.LongTensor: Output generated audio.
|
116 |
+
|
117 |
+
Example:
|
118 |
+
|
119 |
+
```python
|
120 |
+
>>> from transformers import AutoProcessor, BarkModel
|
121 |
+
|
122 |
+
>>> processor = AutoProcessor.from_pretrained("suno/bark-small")
|
123 |
+
>>> model = BarkModel.from_pretrained("suno/bark-small")
|
124 |
+
|
125 |
+
>>> # To add a voice preset, you can pass `voice_preset` to `BarkProcessor.__call__(...)`
|
126 |
+
>>> voice_preset = "v2/en_speaker_6"
|
127 |
+
|
128 |
+
>>> inputs = processor("Hello, my dog is cute, I need him in my life", voice_preset=voice_preset)
|
129 |
+
|
130 |
+
>>> audio_array = model.generate(**inputs, semantic_max_new_tokens=100)
|
131 |
+
>>> audio_array = audio_array.cpu().numpy().squeeze()
|
132 |
+
```
|
133 |
+
"""
|
134 |
+
# TODO (joao):workaround until nested generation config is compatible with PreTrained Model
|
135 |
+
# todo: dict
|
136 |
+
semantic_generation_config = BarkSemanticGenerationConfig(**self.generation_config.semantic_config)
|
137 |
+
coarse_generation_config = BarkCoarseGenerationConfig(**self.generation_config.coarse_acoustics_config)
|
138 |
+
fine_generation_config = BarkFineGenerationConfig(**self.generation_config.fine_acoustics_config)
|
139 |
+
|
140 |
+
kwargs_semantic = {
|
141 |
+
# if "attention_mask" is set, it should not be passed to CoarseModel and FineModel
|
142 |
+
"attention_mask": kwargs.pop("attention_mask", None)
|
143 |
+
}
|
144 |
+
kwargs_coarse = {}
|
145 |
+
kwargs_fine = {}
|
146 |
+
for key, value in kwargs.items():
|
147 |
+
if key.startswith("semantic_"):
|
148 |
+
key = key[len("semantic_") :]
|
149 |
+
kwargs_semantic[key] = value
|
150 |
+
elif key.startswith("coarse_"):
|
151 |
+
key = key[len("coarse_") :]
|
152 |
+
kwargs_coarse[key] = value
|
153 |
+
elif key.startswith("fine_"):
|
154 |
+
key = key[len("fine_") :]
|
155 |
+
kwargs_fine[key] = value
|
156 |
+
else:
|
157 |
+
# If the key is already in a specific config, then it's been set with a
|
158 |
+
# submodules specific value and we don't override
|
159 |
+
if key not in kwargs_semantic:
|
160 |
+
kwargs_semantic[key] = value
|
161 |
+
if key not in kwargs_coarse:
|
162 |
+
kwargs_coarse[key] = value
|
163 |
+
if key not in kwargs_fine:
|
164 |
+
kwargs_fine[key] = value
|
165 |
+
|
166 |
+
# 1. Generate from the semantic model
|
167 |
+
semantic_output = self.semantic.generate(
|
168 |
+
input_ids,
|
169 |
+
history_prompt=history_prompt,
|
170 |
+
semantic_generation_config=semantic_generation_config,
|
171 |
+
**kwargs_semantic,
|
172 |
+
)
|
173 |
+
|
174 |
+
# 2. Generate from the coarse model
|
175 |
+
coarse_output = self.coarse_acoustics.generate(
|
176 |
+
semantic_output,
|
177 |
+
history_prompt=history_prompt,
|
178 |
+
semantic_generation_config=semantic_generation_config,
|
179 |
+
coarse_generation_config=coarse_generation_config,
|
180 |
+
codebook_size=self.generation_config.codebook_size,
|
181 |
+
**kwargs_coarse,
|
182 |
+
)
|
183 |
+
|
184 |
+
# 3. "generate" from the fine model
|
185 |
+
output = self.fine_acoustics.generate(
|
186 |
+
coarse_output,
|
187 |
+
history_prompt=history_prompt,
|
188 |
+
semantic_generation_config=semantic_generation_config,
|
189 |
+
coarse_generation_config=coarse_generation_config,
|
190 |
+
fine_generation_config=fine_generation_config,
|
191 |
+
codebook_size=self.generation_config.codebook_size,
|
192 |
+
**kwargs_fine,
|
193 |
+
)
|
194 |
+
|
195 |
+
if getattr(self, "fine_acoustics_hook", None) is not None:
|
196 |
+
# Manually offload fine_acoustics to CPU
|
197 |
+
# and load codec_model to GPU
|
198 |
+
# since bark doesn't use codec_model forward pass
|
199 |
+
self.fine_acoustics_hook.offload()
|
200 |
+
self.vocos = self.vocos.to(self.device)
|
201 |
+
|
202 |
+
# 4. Decode the output and generate audio array
|
203 |
+
bandwidth_id = torch.tensor([2]).to(self.device)
|
204 |
+
# transpose
|
205 |
+
value = output.transpose(0,1)
|
206 |
+
value = self.vocos.codes_to_features(value)
|
207 |
+
value = self.vocos.decode(value, bandwidth_id=bandwidth_id)
|
208 |
+
|
209 |
+
if getattr(self, "codec_model_hook", None) is not None:
|
210 |
+
# Offload codec_model to CPU
|
211 |
+
self.vocos.offload()
|
212 |
+
|
213 |
+
|
214 |
+
return value
|