Spaces:
Paused
Paused
import torch | |
from transformers import pipeline | |
import numpy as np | |
import gradio as gr | |
def _grab_best_device(use_gpu=True): | |
if torch.cuda.device_count() > 0 and use_gpu: | |
device = "cuda" | |
else: | |
device = "cpu" | |
return device | |
device = _grab_best_device() | |
default_model_per_language = { | |
"english": "kakao-enterprise/vits-ljs", | |
"spanish": "facebook/mms-tts-spa", | |
} | |
models_per_language = { | |
"english": [ | |
("Irish Male Speaker", "ylacombe/vits_ljs_irish_male_monospeaker_2"), | |
("Welsh Female Speaker", "ylacombe/vits_ljs_welsh_female_monospeaker_2"), | |
("Welsh Male Speaker", "ylacombe/vits_ljs_welsh_male_monospeaker_2"), | |
("Scottish Female Speaker", "ylacombe/vits_ljs_scottish_female_monospeaker"), | |
], | |
"spanish": [ | |
("Male Chilean Speaker", "ylacombe/mms-spa-finetuned-chilean-monospeaker"), | |
("Female Argentinian Speaker", "ylacombe/mms-spa-finetuned-argentinian-monospeaker"), | |
("Male Colombian Speaker", "ylacombe/mms-spa-finetuned-colombian-monospeaker"), | |
], | |
} | |
pipe_dict = { | |
"pipe": [pipeline("text-to-speech", model=l[1], device=0) for l in models_per_language["english"]], | |
"original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=0), | |
"language": "english", | |
} | |
title = "# VITS" | |
description = """ | |
TODO | |
""" | |
max_speakers = 15 | |
# Inference | |
def generate_audio(text, language): | |
if pipe_dict["language"] != language: | |
gr.Warning(f"Language has changed - loading corresponding models: {default_model_per_language[language]}") | |
pipe_dict["language"] = language | |
pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=0) | |
pipe_dict["pipe"] = [pipeline("text-to-speech", model=l[1], device=0) for l in models_per_language["english"]] | |
out = [] | |
# first generate original model result | |
output = pipe_dict["original_pipe"](text) | |
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Prediction from the original checkpoint {default_model_per_language[language]}", show_label=True, | |
visible=True) | |
out.append(output) | |
for i in range(min(len(pipe_dict["pipe"]), max_speakers - 1)): | |
output = pipe_dict["pipe"][i](text) | |
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Finetuned {models_per_language[language][i][0]}", show_label=True, | |
visible=True) | |
out.append(output) | |
out.extend([gr.Audio(visible=False)]*(max_speakers-(len(out)))) | |
return out | |
# Gradio blocks demo | |
with gr.Blocks() as demo_blocks: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
inp_text = gr.Textbox(label="Input Text", info="What would you like VITS to synthesise?") | |
btn = gr.Button("Generate Audio!") | |
language = gr.Dropdown( | |
default_model_per_language.keys(), | |
value = "english", | |
label = "language", | |
info = "Language that you want to test" | |
) | |
with gr.Column(): | |
outputs = [] | |
for i in range(max_speakers): | |
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False) | |
outputs.append(out_audio) | |
btn.click(generate_audio, [inp_text, language], outputs) | |
demo_blocks.queue().launch() |