|
import torch |
|
|
|
from transformers import pipeline |
|
|
|
import numpy as np |
|
import gradio as gr |
|
|
|
def _grab_best_device(use_gpu=True): |
|
if torch.cuda.device_count() > 0 and use_gpu: |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
return device |
|
|
|
device = _grab_best_device() |
|
|
|
default_model_per_language = { |
|
"spanish": "facebook/mms-tts-spa", |
|
"tamil": "facebook/mms-tts-tam", |
|
"gujarati": "facebook/mms-tts-guj", |
|
"marathi": "facebook/mms-tts-mar", |
|
"english": "kakao-enterprise/vits-ljs", |
|
} |
|
|
|
models_per_language = { |
|
"english": [ |
|
"ylacombe/vits_ljs_midlands_male_monospeaker", |
|
], |
|
"spanish": [ |
|
"ylacombe/mms-spa-finetuned-chilean-monospeaker", |
|
], |
|
"tamil": [ |
|
"ylacombe/mms-tam-finetuned-monospeaker", |
|
], |
|
"gujarati" : ["ylacombe/mms-guj-finetuned-monospeaker"], |
|
"marathi": ["ylacombe/mms-mar-finetuned-monospeaker"] |
|
} |
|
|
|
HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker" |
|
|
|
|
|
pipe_dict = { |
|
"current_model": "ylacombe/vits_ljs_midlands_male_monospeaker", |
|
"pipe": pipeline("text-to-speech", model=HUB_PATH, device=0), |
|
"original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=0), |
|
"language": "english", |
|
} |
|
|
|
title = """ |
|
# Explore MMS finetuning |
|
## Or how to access truely multilingual TTS |
|
|
|
Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits). |
|
|
|
Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), |
|
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). |
|
|
|
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**. |
|
|
|
Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)! |
|
""" |
|
|
|
max_speakers = 15 |
|
|
|
|
|
|
|
def generate_audio(text, model_id, language): |
|
|
|
if pipe_dict["language"] != language: |
|
gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}") |
|
pipe_dict["language"] = language |
|
pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=0) |
|
|
|
if pipe_dict["current_model"] != model_id: |
|
gr.Warning("Model has changed - loading new model") |
|
pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=0) |
|
pipe_dict["current_model"] = model_id |
|
|
|
num_speakers = pipe_dict["pipe"].model.config.num_speakers |
|
|
|
out = [] |
|
|
|
output = pipe_dict["original_pipe"](text) |
|
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True, |
|
visible=True) |
|
out.append(output) |
|
|
|
|
|
if num_speakers>1: |
|
for i in range(min(num_speakers, max_speakers - 1)): |
|
forward_params = {"speaker_id": i} |
|
output = pipe_dict["pipe"](text, forward_params=forward_params) |
|
|
|
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, |
|
visible=True) |
|
out.append(output) |
|
out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers)) |
|
else: |
|
output = pipe_dict["pipe"](text) |
|
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True, |
|
visible=True) |
|
out.append(output) |
|
out.extend([gr.Audio(visible=False)]*(max_speakers-2)) |
|
return out |
|
|
|
|
|
css = """ |
|
#container{ |
|
margin: 0 auto; |
|
max-width: 80rem; |
|
} |
|
#intro{ |
|
max-width: 100%; |
|
text-align: center; |
|
margin: 0 auto; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo_blocks: |
|
gr.Markdown(title, elem_id="intro") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?") |
|
btn = gr.Button("Generate Audio!") |
|
language = gr.Dropdown( |
|
default_model_per_language.keys(), |
|
value = "spanish", |
|
label = "language", |
|
info = "Language that you want to test" |
|
) |
|
|
|
model_id = gr.Dropdown( |
|
models_per_language["spanish"], |
|
value="ylacombe/mms-spa-finetuned-chilean-monospeaker", |
|
label="Model", |
|
info="Model you want to test", |
|
) |
|
|
|
with gr.Column(): |
|
outputs = [] |
|
for i in range(max_speakers): |
|
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False) |
|
outputs.append(out_audio) |
|
|
|
with gr.Accordion("Datasets and models details", open=False): |
|
gr.Markdown(""" |
|
|
|
For each language, we used 100 to 150 samples of a single speaker to finetune the model. |
|
|
|
### Spanish |
|
|
|
* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa). |
|
* **Datasets**: |
|
- [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish). |
|
|
|
### Tamil |
|
|
|
* **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam). |
|
* **Datasets**: |
|
- [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil). |
|
|
|
### Gujarati |
|
|
|
* **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj). |
|
* **Datasets**: |
|
- [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati). |
|
|
|
### Marathi |
|
|
|
* **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar). |
|
* **Datasets**: |
|
- [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi). |
|
|
|
### English |
|
|
|
* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs) |
|
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs). |
|
|
|
|
|
""") |
|
|
|
with gr.Accordion("Run VITS and MMS with transformers", open=False): |
|
gr.Markdown( |
|
""" |
|
```bash |
|
pip install transformers |
|
``` |
|
```py |
|
from transformers import pipeline |
|
import scipy |
|
pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0) |
|
|
|
results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe") |
|
|
|
# write to a wav file |
|
scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze()) |
|
``` |
|
""" |
|
) |
|
|
|
|
|
language.change(lambda language: gr.Dropdown( |
|
models_per_language[language], |
|
value=models_per_language[language][0], |
|
label="Model", |
|
info="Model you want to test", |
|
), |
|
language, |
|
model_id |
|
) |
|
|
|
btn.click(generate_audio, [inp_text, model_id, language], outputs) |
|
|
|
|
|
demo_blocks.queue().launch() |