muellerzr HF staff commited on
Commit
8d4602c
·
1 Parent(s): 2073499
Files changed (1) hide show
  1. app.py +56 -8
app.py CHANGED
@@ -1,9 +1,44 @@
1
  import re
 
2
  import pandas as pd
3
  import gradio as gr
4
- from py_markdown_table.markdown_table import markdown_table
5
- from model_sizer.utils import get_sizes, create_empty_model, convert_bytes
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  def convert_url_to_name(url:str):
9
  "Converts a model URL to its name on the Hub"
@@ -12,14 +47,14 @@ def convert_url_to_name(url:str):
12
  raise ValueError(f"URL {url} is not a valid model URL to the Hugging Face Hub")
13
  return results[0]
14
 
15
- def calculate_memory(model_name:str, library:str, options:list):
16
  "Calculates the memory usage for a model"
17
  if library == "auto":
18
  library = None
19
  if "huggingface.co" in model_name:
20
  model_name = convert_url_to_name(model_name)
21
- model = create_empty_model(model_name, library_name=library)
22
- total_size, largest_layer = get_sizes(model)
23
 
24
  data = []
25
 
@@ -45,7 +80,15 @@ def calculate_memory(model_name:str, library:str, options:list):
45
  "Total Size": dtype_total_size,
46
  "Training using Adam": dtype_training_size
47
  })
48
- return f'## {title}', pd.DataFrame(data)
 
 
 
 
 
 
 
 
49
 
50
  with gr.Blocks() as demo:
51
  gr.Markdown(
@@ -75,10 +118,15 @@ with gr.Blocks() as demo:
75
  ["float32", "float16", "int8", "int4"],
76
  value="float32"
77
  )
78
- btn = gr.Button("Calculate Memory Usage", scale=0.5)
 
 
79
 
80
  btn.click(
81
- calculate_memory, inputs=[inp, library, options], outputs=[out_text, out],
82
  )
 
 
 
83
 
84
  demo.launch()
 
1
  import re
2
+ import webbrowser
3
  import pandas as pd
4
  import gradio as gr
5
+ from huggingface_hub import HfApi
6
+ from accelerate.commands.estimate import create_empty_model
7
+ from accelerate.utils import convert_bytes, calculate_maximum_sizes
8
 
9
+ # We need to store them as globals because gradio doesn't have a way for us to pass them in to the button
10
+ HAS_DISCUSSION = True
11
+ MODEL_NAME = None
12
+ LIBRARY = None
13
+ TRUST_REMOTE_CODE = False
14
+
15
+ # We use this class to check if a discussion has been opened on the model by `huggingface_model_memory_bot`
16
+ hf_api = HfApi()
17
+
18
+ def check_for_discussion(model_name:str):
19
+ "Checks if a discussion has been opened on the model"
20
+ global hf_api
21
+ discussions = list(hf_api.get_repo_discussions(model_name))
22
+ return any(discussion.title == "[AUTOMATED] Model Memory Requirements" for discussion in discussions)
23
+
24
+ def report_results():
25
+ "Reports the results of a memory calculation to the model's discussion"
26
+ global MODEL_NAME, LIBRARY, TRUST_REMOTE_CODE
27
+ _, results = calculate_memory(MODEL_NAME, LIBRARY, ["float32", "float16", "int8", "int4"], TRUST_REMOTE_CODE, raw=True)
28
+ post = f"""# Model Memory Requirements\n
29
+
30
+ These calculations were measured from the [Model Memory Utility Space](https://hf.co/spaces/muellerzr/model-memory-utility) on the Hub.
31
+
32
+ The minimum recommended vRAM needed for this model to perform inference via [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) is denoted by the size of the "largest layer" and training of the model is roughly 4x its total size (for Adam).
33
+
34
+ ## Results
35
+
36
+ """
37
+ global hf_api
38
+ post += results.to_markdown(index=False)
39
+ discussion = hf_api.create_discussion(MODEL_NAME, "[AUTOMATED] Model Memory Requirements", description=post)
40
+ webbrowser.open_new_tab(discussion.url)
41
+
42
 
43
  def convert_url_to_name(url:str):
44
  "Converts a model URL to its name on the Hub"
 
47
  raise ValueError(f"URL {url} is not a valid model URL to the Hugging Face Hub")
48
  return results[0]
49
 
50
+ def calculate_memory(model_name:str, library:str, options:list, trust_remote_code:bool, raw=False):
51
  "Calculates the memory usage for a model"
52
  if library == "auto":
53
  library = None
54
  if "huggingface.co" in model_name:
55
  model_name = convert_url_to_name(model_name)
56
+ model = create_empty_model(model_name, library_name=library, trust_remote_code=trust_remote_code)
57
+ total_size, largest_layer = calculate_maximum_sizes(model)
58
 
59
  data = []
60
 
 
80
  "Total Size": dtype_total_size,
81
  "Training using Adam": dtype_training_size
82
  })
83
+ global HAS_DISCUSSION, MODEL_NAME, LIBRARY, TRUST_REMOTE_CODE
84
+ HAS_DISCUSSION = check_for_discussion(model_name)
85
+ MODEL_NAME = model_name
86
+ LIBRARY = library
87
+ TRUST_REMOTE_CODE = trust_remote_code
88
+ results = [f'## {title}', pd.DataFrame(data)]
89
+ if not raw:
90
+ results += [gr.update(visible=not HAS_DISCUSSION)]
91
+ return results
92
 
93
  with gr.Blocks() as demo:
94
  gr.Markdown(
 
118
  ["float32", "float16", "int8", "int4"],
119
  value="float32"
120
  )
121
+ trust_remote_code = gr.Checkbox(label="Trust Remote Code", value=False)
122
+ btn = gr.Button("Calculate Memory Usage")
123
+ post_to_hub = gr.Button(value = "Report results in this model repo's discussions!", visible=False)
124
 
125
  btn.click(
126
+ calculate_memory, inputs=[inp, library, options, trust_remote_code], outputs=[out_text, out, post_to_hub],
127
  )
128
+
129
+ post_to_hub.click(report_results)
130
+
131
 
132
  demo.launch()