Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import pandas as pd | |
from hub_utils import check_for_discussion, report_results | |
from model_utils import calculate_memory, get_model | |
from huggingface_hub.utils import HfHubHTTPError | |
def get_results(model_name: str, library: str, options: list, access_token: str): | |
model = get_model(model_name, library, access_token) | |
try: | |
has_discussion = check_for_discussion(model_name) | |
except HfHubHTTPError: | |
has_discussion = True | |
title = f"## Memory usage for '{model_name}'" | |
data = calculate_memory(model, options) | |
return [title, gr.update(visible=True, value=pd.DataFrame(data)), gr.update(visible=not has_discussion)] | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown( | |
"..." | |
) | |
out_text = gr.Markdown() | |
out = gr.DataFrame( | |
headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"], | |
interactive=False, | |
visible=False, | |
) | |
with gr.Row(): | |
inp = gr.Textbox(label="Model Name or URL", value="bert-base-cased") | |
with gr.Row(): | |
library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto") | |
options = gr.CheckboxGroup( | |
["float32", "float16/bfloat16", "int8", "int4"], | |
value="float32", | |
label="Model Precision", | |
) | |
access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)") | |
with gr.Row(): | |
btn = gr.Button("Calculate Memory Usage") | |
post_to_hub = gr.Button( | |
value="Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False | |
) | |
btn.click( | |
get_results, | |
inputs=[inp, library, options, access_token], | |
outputs=[out_text, out, post_to_hub], | |
api_name=False, | |
) | |
post_to_hub.click(lambda: gr.Button.update(visible=False), outputs=post_to_hub, api_name=False).then( | |
report_results, inputs=[inp, library, access_token] | |
) | |
demo.launch() | |