model-memory-usage / src /model_utils.py
muellerzr's picture
muellerzr HF staff
Only do model name translation for Llama-2 and CodeLlama (#37)
672cbb0 verified
raw
history blame
4.05 kB
# Utilities related to loading in and working with models/specific models
from urllib.parse import urlparse
import gradio as gr
import torch
from accelerate.commands.estimate import check_has_model, create_empty_model, estimate_training_usage
from accelerate.utils import calculate_maximum_sizes, convert_bytes
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
DTYPE_MODIFIER = {"float32": 1, "float16/bfloat16": 2, "int8": 4, "int4": 8}
def extract_from_url(name: str):
"Checks if `name` is a URL, and if so converts it to a model name"
is_url = False
try:
result = urlparse(name)
is_url = all([result.scheme, result.netloc])
except Exception:
is_url = False
# Pass through if not a URL
if not is_url:
return name
else:
path = result.path
return path[1:]
def translate_llama(text):
"Translates Llama-2 and CodeLlama to its hf counterpart"
if not text.endswith("-hf"):
return text + "-hf"
return text
def get_model(model_name: str, library: str, access_token: str):
"Finds and grabs model from the Hub, and initializes on `meta`"
if "meta-llama/Llama-2-" in model_name or "meta-llama/CodeLlama-" in model_name:
model_name = translate_llama(model_name)
if library == "auto":
library = None
model_name = extract_from_url(model_name)
try:
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token)
except GatedRepoError:
raise gr.Error(
f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. "
)
except RepositoryNotFoundError:
raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.")
except ValueError:
raise gr.Error(
f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)"
)
except (RuntimeError, OSError) as e:
library = check_has_model(e)
if library != "unknown":
raise gr.Error(
f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo."
)
raise gr.Error(
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`"
)
except ImportError:
# hacky way to check if it works with `trust_remote_code=False`
model = create_empty_model(
model_name, library_name=library, trust_remote_code=False, access_token=access_token
)
except Exception as e:
raise gr.Error(
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`"
)
return model
def calculate_memory(model: torch.nn.Module, options: list):
"Calculates the memory usage for a model init on `meta` device"
total_size, largest_layer = calculate_maximum_sizes(model)
data = []
for dtype in options:
dtype_total_size = total_size
dtype_largest_layer = largest_layer[0]
modifier = DTYPE_MODIFIER[dtype]
dtype_training_size = estimate_training_usage(
dtype_total_size, dtype if dtype != "float16/bfloat16" else "float16"
)
dtype_total_size /= modifier
dtype_largest_layer /= modifier
dtype_total_size = convert_bytes(dtype_total_size)
dtype_largest_layer = convert_bytes(dtype_largest_layer)
data.append(
{
"dtype": dtype,
"Largest Layer or Residual Group": dtype_largest_layer,
"Total Size": dtype_total_size,
"Training using Adam (Peak vRAM)": dtype_training_size,
}
)
return data