accelerate_examples / code_samples /initial_with_metrics
muellerzr's picture
muellerzr HF staff
Merge
a791472
raw
history blame
698 Bytes
<pre>
import evaluate
metric = evaluate.load("accuracy")
for batch in train_dataloader:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
for batch in eval_dataloader:
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
with torch.no_grad():
outputs = model(inputs)
predictions = outputs.argmax(dim=-1)
metric.add_batch(
predictions = predictions,
references = references
)
print(metric.compute())</pre>