Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from contextlib import contextmanager | |
import gradio as gr | |
from markup import get_text, highlight | |
from template import get_templates | |
templates = get_templates() | |
def fill_tab(title, explanation): | |
""" | |
Fill the tab with the appropriate title and explanation. | |
""" | |
return gr.Markdown(title), gr.Markdown(explanation) | |
def new_section(): | |
""" | |
A context manager to create a new section in the interface. Equivalent of: | |
```python | |
with gr.Row(): | |
with gr.Column(): | |
... | |
``` | |
""" | |
with gr.Row(): | |
with gr.Column(): | |
yield | |
def change(inp, textbox): | |
"""Based on an `inp`, render and highlight the appropriate code sample. | |
Args: | |
inp (`str`): | |
The input button from the interface. | |
textbox (`str`): | |
The textbox specifying the tab name from the interface. | |
Returns: | |
`tuple`: A tuple of the highlighted code diff, and the title for the section. | |
""" | |
if textbox == "base": | |
code, explanation, docs = get_text(inp, textbox) | |
if inp == "Basic": | |
return ( | |
highlight(code), | |
"## Accelerate Code (Base Integration)", | |
explanation, | |
docs, | |
) | |
elif inp == "Calculating Metrics": | |
return (highlight(code), f"## Accelerate Code ({inp})", explanation, docs) | |
else: | |
return (highlight(code), f"## Accelerate Code ({inp})", explanation, docs) | |
elif textbox == "training_configuration": | |
yaml, changes, command, explanation, docs = get_text(inp, textbox) | |
return (highlight(yaml), highlight(changes), command, explanation, docs) | |
else: | |
raise ValueError(f"Invalid tab name: {textbox}") | |
default_base = change("Basic", "base") | |
default_training_config = change("Multi GPU", "training_configuration") | |
def base_features(textbox): | |
inp = gr.Radio( | |
[ | |
"Basic", | |
"Calculating Metrics", | |
"Checkpointing", | |
"Experiment Tracking", | |
"Gradient Accumulation", | |
], | |
label="Select a feature you would like to integrate", | |
value="Basic", | |
) | |
with new_section(): | |
feature, out = fill_tab("## Accelerate Code", default_base[0]) | |
with new_section(): | |
_, explanation = fill_tab("## Explanation", default_base[2]) | |
with new_section(): | |
_, docs = fill_tab("## Documentation Links", default_base[3]) | |
inp.change( | |
fn=change, inputs=[inp, textbox], outputs=[out, feature, explanation, docs] | |
) | |
def training_config(textbox): | |
inp = gr.Radio( | |
[ | |
"AWS SageMaker", | |
"DeepSpeed", | |
"Megatron-LM", | |
"Multi GPU", | |
"Multi Node Multi GPU", | |
"PyTorch FSDP", | |
], | |
label="Select a distributed YAML configuration you would like to view.", | |
value="Multi GPU", | |
) | |
with new_section(): | |
_, yaml = fill_tab("## Example YAML Configuration", default_training_config[0]) | |
with new_section(): | |
_, changes = fill_tab( | |
"## Changes to Training Script", default_training_config[1] | |
) | |
with new_section(): | |
_, command = fill_tab("## Command to Run Training", default_training_config[2]) | |
with new_section(): | |
_, explanation = fill_tab("## Explanation", default_training_config[3]) | |
with new_section(): | |
_, docs = fill_tab("## Documentation Links", default_training_config[4]) | |
inp.change( | |
fn=change, | |
inputs=[inp, textbox], | |
outputs=[yaml, changes, command, explanation, docs], | |
) | |
# def big_model_inference(): | |
# inp = gr.Radio( | |
# ["Accelerate's Big Model Inference",], # "DeepSpeed ZeRO Stage-3 Offload" | |
# label="Select a feature you would like to integrate", | |
# value="Basic", | |
# ) | |
# with gr.Row(): | |
# with gr.Column(): | |
# feature = gr.Markdown("## Accelerate Code") | |
# out = gr.Markdown(default[0]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown(default[1]) | |
# explanation = gr.Markdown(default[2]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown("## Documentation Links") | |
# docs = gr.Markdown(default[3]) | |
# inp.change(fn=change, inputs=[inp, "big_model_inference"], outputs=[out, feature, explanation, docs]) | |
# def notebook_launcher(): | |
# inp = gr.Radio( | |
# ["Colab GPU", "Colab TPU", "Kaggle GPU", "Kaggle Multi GPU", "Kaggle TPU", "Multi GPU VMs"], | |
# label="Select a feature you would like to integrate", | |
# value="Basic", | |
# ) | |
# with gr.Row(): | |
# with gr.Column(): | |
# feature = gr.Markdown("## Accelerate Code") | |
# out = gr.Markdown(default[0]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown(default[1]) | |
# explanation = gr.Markdown(default[2]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown("## Documentation Links") | |
# docs = gr.Markdown(default[3]) | |
# inp.change(fn=change, inputs=[inp, "notebook_launcher"], outputs=[out, feature, explanation, docs]) | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem("Basic Training Integration"): | |
textbox = gr.Textbox(label="tab_name", visible=False, value="base") | |
base_features(textbox) | |
with gr.TabItem("Launch Configuration"): | |
textbox = gr.Textbox( | |
label="tab_name", visible=False, value="training_configuration" | |
) | |
training_config(textbox) | |
with gr.TabItem("Big Model Inference"): | |
# big_model_inference() | |
pass | |
with gr.TabItem("Launching from Notebooks"): | |
# notebook_launcher() | |
pass | |
demo.launch() | |