|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import sys
|
|
import os
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
from model import Kronos, KronosTokenizer, KronosPredictor
|
|
|
|
|
|
def plot_prediction(kline_df, pred_df):
|
|
pred_df.index = kline_df.index[-pred_df.shape[0]:]
|
|
sr_close = kline_df['close']
|
|
sr_pred_close = pred_df['close']
|
|
sr_close.name = 'Ground Truth'
|
|
sr_pred_close.name = "Prediction"
|
|
|
|
close_df = pd.concat([sr_close, sr_pred_close], axis=1)
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
|
|
|
|
ax.plot(close_df['Ground Truth'], label='Ground Truth', color='blue', linewidth=1.5)
|
|
ax.plot(close_df['Prediction'], label='Prediction', color='red', linewidth=1.5)
|
|
ax.set_ylabel('Close Price', fontsize=14)
|
|
ax.legend(loc='lower left', fontsize=12)
|
|
ax.grid(True)
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
|
|
tokenizer = KronosTokenizer.from_pretrained("NeoQuasar/Kronos-Tokenizer-base")
|
|
model = Kronos.from_pretrained("NeoQuasar/Kronos-base")
|
|
|
|
|
|
predictor = KronosPredictor(model, tokenizer, device="cpu", max_context=512)
|
|
|
|
|
|
df = pd.read_csv("./examples/data/XSHG_5min_600977.csv")
|
|
df['timestamps'] = pd.to_datetime(df['timestamps'])
|
|
|
|
lookback = 400
|
|
pred_len = 120
|
|
|
|
x_df = df.loc[:lookback-1, ['open', 'high', 'low', 'close']]
|
|
x_timestamp = df.loc[:lookback-1, 'timestamps']
|
|
y_timestamp = df.loc[lookback:lookback+pred_len-1, 'timestamps']
|
|
|
|
|
|
pred_df = predictor.predict(
|
|
df=x_df,
|
|
x_timestamp=x_timestamp,
|
|
y_timestamp=y_timestamp,
|
|
pred_len=pred_len,
|
|
T=1.0,
|
|
top_p=0.9,
|
|
sample_count=1,
|
|
verbose=True
|
|
)
|
|
|
|
|
|
print("Forecasted Data Head:")
|
|
print(pred_df.head())
|
|
|
|
|
|
kline_df = df.loc[:lookback+pred_len-1]
|
|
|
|
|
|
plot_prediction(kline_df, pred_df)
|
|
|
|
|