Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from kokoro import KModel, KPipeline | |
import gradio as gr | |
import os | |
import random | |
import torch | |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/') | |
CHAR_LIMIT = None if IS_DUPLICATE else 5000 | |
CUDA_AVAILABLE = torch.cuda.is_available() | |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} | |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'} | |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO' | |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ' | |
def forward_gpu(ps, ref_s, speed): | |
return models[True](ps, ref_s, speed) | |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): | |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] | |
pipeline = pipelines[voice[0]] | |
pack = pipeline.load_voice(voice) | |
use_gpu = use_gpu and CUDA_AVAILABLE | |
for _, ps, _ in pipeline(text, voice, speed): | |
ref_s = pack[len(ps)-1] | |
try: | |
if use_gpu: | |
audio = forward_gpu(ps, ref_s, speed) | |
else: | |
audio = models[False](ps, ref_s, speed) | |
except gr.exceptions.Error as e: | |
if use_gpu: | |
gr.Warning(str(e)) | |
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') | |
audio = models[False](ps, ref_s, speed) | |
else: | |
raise gr.Error(e) | |
return (24000, audio.numpy()), ps | |
return None, '' | |
# Arena API | |
def predict(text, voice='af_heart', speed=1): | |
return return_audio_ps(text, voice, speed, use_gpu=False)[0] | |
def tokenize_first(text, voice='af_heart'): | |
pipeline = pipelines[voice[0]] | |
for _, ps, _ in pipeline(text, voice): | |
return ps | |
return '' | |
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): | |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] | |
pipeline = pipelines[voice[0]] | |
pack = pipeline.load_voice(voice) | |
use_gpu = use_gpu and CUDA_AVAILABLE | |
for _, ps, _ in pipeline(text, voice, speed): | |
ref_s = pack[len(ps)-1] | |
try: | |
if use_gpu: | |
audio = forward_gpu(ps, ref_s, speed) | |
else: | |
audio = models[False](ps, ref_s, speed) | |
except gr.exceptions.Error as e: | |
if use_gpu: | |
gr.Warning(str(e)) | |
gr.Info('Switching to CPU') | |
audio = models[False](ps, ref_s, speed) | |
else: | |
raise gr.Error(e) | |
yield 24000, audio.numpy() | |
random_texts = {} | |
for lang in ['en']: | |
with open(f'{lang}.txt', 'r') as r: | |
random_texts[lang] = [line.strip() for line in r] | |
def get_random_text(voice): | |
lang = dict(a='en', b='en')[voice[0]] | |
return random.choice(random_texts[lang]) | |
CHOICES = { | |
'🇺🇸 🚺 Heart ❤️': 'af_heart', | |
'🇺🇸 🚺 Bella 🔥': 'af_bella', | |
'🇺🇸 🚺 Nicole 🎧': 'af_nicole', | |
'🇺🇸 🚺 Aoede': 'af_aoede', | |
'🇺🇸 🚺 Kore': 'af_kore', | |
'🇺🇸 🚺 Sarah': 'af_sarah', | |
'🇺🇸 🚺 Nova': 'af_nova', | |
'🇺🇸 🚺 Sky': 'af_sky', | |
'🇺🇸 🚺 Alloy': 'af_alloy', | |
'🇺🇸 🚺 Jessica': 'af_jessica', | |
'🇺🇸 🚺 River': 'af_river', | |
'🇺🇸 🚹 Michael': 'am_michael', | |
'🇺🇸 🚹 Fenrir': 'am_fenrir', | |
'🇺🇸 🚹 Puck': 'am_puck', | |
'🇺🇸 🚹 Echo': 'am_echo', | |
'🇺🇸 🚹 Eric': 'am_eric', | |
'🇺🇸 🚹 Liam': 'am_liam', | |
'🇺🇸 🚹 Onyx': 'am_onyx', | |
'🇺🇸 🚹 Santa': 'am_santa', | |
'🇺🇸 🚹 Adam': 'am_adam', | |
'🇬🇧 🚺 Emma': 'bf_emma', | |
'🇬🇧 🚺 Isabella': 'bf_isabella', | |
'🇬🇧 🚺 Alice': 'bf_alice', | |
'🇬🇧 🚺 Lily': 'bf_lily', | |
'🇬🇧 🚹 George': 'bm_george', | |
'🇬🇧 🚹 Fable': 'bm_fable', | |
'🇬🇧 🚹 Lewis': 'bm_lewis', | |
'🇬🇧 🚹 Daniel': 'bm_daniel', | |
} | |
for v in CHOICES.values(): | |
pipelines[v[0]].load_voice(v) | |
TOKEN_NOTE = ''' | |
💡 You can customize pronunciation like this: `[Kokoro](/kˈOkəɹO/)` | |
⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)` | |
⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words) | |
''' | |
with gr.Blocks() as generate_tab: | |
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True) | |
generate_btn = gr.Button('Generate', variant='primary') | |
with gr.Accordion('Output Tokens', open=False): | |
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.') | |
tokenize_btn = gr.Button('Tokenize', variant='secondary') | |
gr.Markdown(TOKEN_NOTE) | |
predict_btn = gr.Button('Predict', variant='secondary', visible=False) | |
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.'] | |
if CHAR_LIMIT is not None: | |
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.') | |
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:') | |
STREAM_NOTE = '\n\n'.join(STREAM_NOTE) | |
with gr.Blocks() as stream_tab: | |
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True) | |
with gr.Row(): | |
stream_btn = gr.Button('Stream', variant='primary') | |
stop_btn = gr.Button('Stop', variant='stop') | |
with gr.Accordion('Note', open=True): | |
gr.Markdown(STREAM_NOTE) | |
gr.DuplicateButton() | |
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS' | |
API_NAME = None if API_OPEN else False | |
with gr.Blocks() as app: | |
with gr.Row(): | |
gr.Markdown('[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://hf.co/hexgrad/Kokoro-82M)', container=True) | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream") | |
with gr.Row(): | |
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language') | |
use_gpu = gr.Dropdown( | |
[('ZeroGPU 🚀', True), ('CPU 🐌', False)], | |
value=CUDA_AVAILABLE, | |
label='Hardware', | |
info='GPU is usually faster, but has a usage quota', | |
interactive=CUDA_AVAILABLE | |
) | |
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed') | |
random_btn = gr.Button('Random Text', variant='secondary') | |
with gr.Column(): | |
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream']) | |
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME) | |
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME) | |
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME) | |
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME) | |
stop_btn.click(fn=None, cancels=stream_event) | |
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME) | |
if __name__ == '__main__': | |
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True) | |