Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Deploy OceanApp demo.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing | |
![ ](https://i.pinimg.com/564x/3e/b8/f7/3eb8f7c348dffd7b3dffcafe81fbf2a6.jpg) | |
# Modelo | |
YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. | |
## Gradio Inferencia | |
![](https://i.ibb.co/982NS6m/header.png) | |
Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU | |
---------------------------------------------------------------------- | |
YOLOv5 Gradio demo | |
*Author: Ultralytics LLC and Gradio* | |
# C贸digo | |
""" | |
#!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies | |
import gradio as gr | |
import pandas as pd | |
import torch | |
import logging | |
import json | |
from PIL import Image | |
# Images | |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg') | |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg') | |
# Model | |
#model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update | |
#model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # local model o google colab | |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab | |
#model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local') # local repo | |
def listJSON(a,b,c,d,e,f): | |
#for n in | |
if d =='Pelicano\nSp': | |
d = 'Pelicano' | |
if f!='Pelicano': | |
strlista = '"detail":[{"quantity":"'+str(c)+'","description":"'+str(d)+'"}]' | |
else: | |
strlista = '"detail":[{"quantity":"'+str(c)+'","description":"'+str(d)+'"},{"quantity":"'+str(e)+'","description":"'+str(f)+'"}]' | |
strlist = '{"image":"'+str(a)+'","size":"'+str(b)+'",'+strlista+'}' | |
json_string = json.loads(strlist) | |
return json_string | |
def arrayLista(a,b,c,d): | |
strlist =[] | |
strlist2 =[] | |
strlist.append(a) | |
if b =='Pelicano\nSp': | |
strlist.append('Pelicano') | |
else: | |
strlist.append(b) | |
if d=='Pelicano': | |
strlist2.append(c) | |
strlist2.append(d) | |
strlista = [strlist,strlist2] | |
df = pd.DataFrame(strlista,columns=['Cantidad','Especie']) | |
return df | |
def yolo(size, iou, conf, im): | |
try: | |
'''Wrapper fn for gradio''' | |
g = (int(size) / max(im.size)) # gain | |
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
model.iou = iou | |
model.conf = conf | |
results2 = model(im) # inference | |
results2.render() # updates results.imgs with boxes and labels | |
results3 = str(results2) | |
lista = listJSON(results3[0:9], results3[11:18] ,results3[19:20],results3[21:32], results3[35:36], results3[37:45]) | |
lista2 = arrayLista(results3[19:20],results3[21:32], results3[35:36], results3[37:45]) | |
return Image.fromarray(results2.ims[0]), lista2, lista | |
except Exception as e: | |
logging.error(e, exc_info=True) | |
#------------ Interface------------- | |
in1 = gr.inputs.Radio(['640', '1280'], label="Tama帽o de la imagen", default='640', type='value') | |
in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.45, label='NMS IoU threshold') | |
in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold') | |
in4 = gr.inputs.Image(type='pil', label="Original Image") | |
out2 = gr.outputs.Image(type="pil", label="Identificaci贸n con Yolov5") | |
out3 = gr.outputs.Dataframe(label="Descripci贸n", headers=['Cantidad','Especie']) | |
out4 = gr.outputs.JSON(label="JSON") | |
#-------------- Text----- | |
title = 'OceanApp' | |
description = """ | |
<p> | |
<center> | |
<p>Sistema para el reconocimiento de las especies en la pesca acompa帽ante de cerco, utilizando redes neuronales convolucionales para una empresa del sector pesquero en los puertos de callao y paracas.</p> | |
<p><b>Nota</b>: Este modelo solo acepta imagenes de <b>Lobos marinos</b> o <b>Pelicanos</b> proporcionados por empresas peruanas.</p> | |
<center> | |
<img src="https://i.pinimg.com/564x/3e/b8/f7/3eb8f7c348dffd7b3dffcafe81fbf2a6.jpg" alt="logo" width="250"/> | |
</center> | |
</center> | |
</p> | |
""" | |
article ="<p style='text-align: center'><a href='' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/MssLune/OceanApp-Model' target='_blank'>Repo Github</a></p></center></p>" | |
examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']] | |
iface = gr.Interface(yolo, inputs=[in1, in2, in3, in4], outputs=[out2,out3,out4], title=title, description=description, article=article, examples=examples,theme="huggingface", analytics_enabled=False).launch( | |
debug=True) | |
iface.launch() | |
"""For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36). | |
## Citation | |
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686) | |
""" |