OceanApp / app.py
Geraldine J
Modify arrayLista and JSON
ffd9cf3
raw
history blame
5.63 kB
# -*- coding: utf-8 -*-
"""Deploy OceanApp demo.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing
![ ](https://i.pinimg.com/564x/3e/b8/f7/3eb8f7c348dffd7b3dffcafe81fbf2a6.jpg)
# Modelo
YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
## Gradio Inferencia
![](https://i.ibb.co/982NS6m/header.png)
Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU
----------------------------------------------------------------------
YOLOv5 Gradio demo
*Author: Ultralytics LLC and Gradio*
# C贸digo
"""
#!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies
import gradio as gr
import pandas as pd
import torch
import logging
import json
from PIL import Image
# Images
torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg')
torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg')
# Model
#model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
#model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # local model o google colab
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab
#model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local') # local repo
def listJSON(a,b,c,d,e,f):
#for n in
if d =='Pelicano\nSp':
d = 'Pelicano'
if f!='Pelicano':
strlista = '"detail":[{"quantity":"'+str(c)+'","description":"'+str(d)+'"}]'
else:
strlista = '"detail":[{"quantity":"'+str(c)+'","description":"'+str(d)+'"},{"quantity":"'+str(e)+'","description":"'+str(f)+'"}]'
strlist = '{"image":"'+str(a)+'","size":"'+str(b)+'",'+strlista+'}'
json_string = json.loads(strlist)
return json_string
def arrayLista(a,b,c,d):
strlist =[]
strlist2 =[]
strlist.append(a)
if b =='Pelicano\nSp':
strlist.append('Pelicano')
else:
strlist.append(b)
if d=='Pelicano':
strlist2.append(c)
strlist2.append(d)
strlista = [strlist,strlist2]
df = pd.DataFrame(strlista,columns=['Cantidad','Especie'])
return df
def yolo(size, iou, conf, im):
try:
'''Wrapper fn for gradio'''
g = (int(size) / max(im.size)) # gain
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
model.iou = iou
model.conf = conf
results2 = model(im) # inference
results2.render() # updates results.imgs with boxes and labels
results3 = str(results2)
lista = listJSON(results3[0:9], results3[11:18] ,results3[19:20],results3[21:32], results3[35:36], results3[37:45])
lista2 = arrayLista(results3[19:20],results3[21:32], results3[35:36], results3[37:45])
return Image.fromarray(results2.ims[0]), lista2, lista
except Exception as e:
logging.error(e, exc_info=True)
#------------ Interface-------------
in1 = gr.inputs.Radio(['640', '1280'], label="Tama帽o de la imagen", default='640', type='value')
in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.45, label='NMS IoU threshold')
in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold')
in4 = gr.inputs.Image(type='pil', label="Original Image")
out2 = gr.outputs.Image(type="pil", label="Identificaci贸n con Yolov5")
out3 = gr.outputs.Dataframe(label="Descripci贸n", headers=['Cantidad','Especie'])
out4 = gr.outputs.JSON(label="JSON")
#-------------- Text-----
title = 'OceanApp'
description = """
<p>
<center>
<p>Sistema para el reconocimiento de las especies en la pesca acompa帽ante de cerco, utilizando redes neuronales convolucionales para una empresa del sector pesquero en los puertos de callao y paracas.</p>
<p><b>Nota</b>: Este modelo solo acepta imagenes de <b>Lobos marinos</b> o <b>Pelicanos</b> proporcionados por empresas peruanas.</p>
<center>
<img src="https://i.pinimg.com/564x/3e/b8/f7/3eb8f7c348dffd7b3dffcafe81fbf2a6.jpg" alt="logo" width="250"/>
</center>
</center>
</p>
"""
article ="<p style='text-align: center'><a href='' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/MssLune/OceanApp-Model' target='_blank'>Repo Github</a></p></center></p>"
examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']]
iface = gr.Interface(yolo, inputs=[in1, in2, in3, in4], outputs=[out2,out3,out4], title=title, description=description, article=article, examples=examples,theme="huggingface", analytics_enabled=False).launch(
debug=True)
iface.launch()
"""For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
## Citation
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
"""