Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Deploy OceanApp demo.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing | |
![ ](https://i.pinimg.com/564x/3e/b8/f7/3eb8f7c348dffd7b3dffcafe81fbf2a6.jpg) | |
# Modelo | |
YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. | |
## Gradio Inferencia | |
![](https://i.ibb.co/982NS6m/header.png) | |
Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU | |
---------------------------------------------------------------------- | |
YOLOv5 Gradio demo | |
*Author: Ultralytics LLC and Gradio* | |
# C贸digo | |
""" | |
#!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies | |
import gradio as gr | |
import pandas as pd | |
import torch | |
import logging | |
import json | |
import re | |
import os | |
import boto3 | |
from botocore.exceptions import NoCredentialsError | |
import tempfile | |
import io | |
from PIL import Image | |
# Images | |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg') | |
torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg') | |
aws_access_key_id = os.environ['aws_access_key_id'] | |
aws_secret_access_key = os.environ['aws_secret_access_key'] | |
region = os.environ['region'] | |
#Lista Json y Dataframe | |
def removeStr(string): | |
return string.replace(" ", "") | |
def qtyEspecies(datax, datay, resImg): | |
numLobos = 0 | |
numPelicanos = 0 | |
dfEspecies = pd.DataFrame(datax) | |
for i in range(0, dfEspecies['name'].size): | |
if(dfEspecies['name'][i] == 'Lobo marino'): | |
numLobos= numLobos + 1 | |
if(dfEspecies['name'][i] == 'Pelicano'): | |
numPelicanos= numPelicanos + 1 | |
strlista = '"detail":[{"quantity":"'+str(numLobos)+'","description":"Lobo marino"},{"quantity":"'+str(numPelicanos)+'","description":"Pelicano"}]' | |
data = '{"image":"'+str(removeStr(datay[0:9]))+'","size":"'+str(removeStr(datay[11:18]))+'",'+strlista+','+resImg+'}' | |
json_data = json.loads(data) | |
return json_data | |
def arrayLista(a,b,c,d): | |
x = re.findall("obo Mar", b) | |
y = re.findall("elica", b) | |
z = re.findall("elica", d) | |
if x: | |
b = 'Lobo marino' | |
if y: | |
b = 'Pelicano' | |
if z: | |
d = 'Pelicano' | |
if(b=='Lobo marino' or b=='Pelicano'): | |
strlist =[] | |
strlist2 =[] | |
strlist.append(removeStr(a)) | |
strlist.append(b) | |
if d=='Pelicano': | |
strlist2.append(removeStr(c)) | |
strlist2.append(d) | |
strlista = [strlist,strlist2] | |
df = pd.DataFrame(strlista,columns=['Cantidad','Especie']) | |
return df | |
#Imagen temporal guardada en upload_file | |
def tempFileJSON(img_file): | |
temp = tempfile.NamedTemporaryFile(mode="wb") | |
with temp as jpg: | |
jpg.write(img_file) | |
print(jpg.name) | |
uf = upload_file(jpg.name) | |
return uf | |
# Envio de imagenes a S3 | |
def upload_file(file_name, bucket=None, object_name=None): | |
"""Upload a file to an S3 bucket | |
:param file_name: File to upload | |
:param bucket: Bucket to upload to | |
:param object_name: S3 object name. If not specified then file_name is used | |
:return: Json if file was uploaded, else False | |
""" | |
# If S3 object_name was not specified, use file_name | |
if object_name is None: | |
object_name = os.path.basename(file_name+".jpg") | |
if bucket is None: | |
bucket = 'oceanapp' | |
s3_client = boto3.client('s3',aws_access_key_id=aws_access_key_id,aws_secret_access_key=aws_secret_access_key) | |
aws_region = boto3.session.Session().region_name | |
# Upload the file | |
try: | |
with open(file_name, "rb") as f: | |
response = s3_client.upload_fileobj(f, bucket, object_name) | |
s3_url = f"https://{bucket}.s3.amazonaws.com/{object_name}" | |
stado = '"url_details":[{"statusCode":200, "s3_url":"'+s3_url+'"}]' | |
print(s3_url) | |
except FileNotFoundError: | |
print("The file was not found") | |
return False | |
except NoCredentialsError as e: | |
logging.error(e) | |
return False | |
return stado | |
# Model | |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab | |
def yolo(size, iou, conf, im): | |
try: | |
'''Wrapper fn for gradio''' | |
# gain | |
g = (int(size) / max(im.size)) | |
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) | |
model.iou = iou | |
model.conf = conf | |
# inference | |
results2 = model(im) | |
# updates results.imgs with boxes and labels | |
results2.render() | |
results3 = str(results2) | |
#Contador de especies | |
results5=results2.pandas().xyxy[0].sort_values('name') | |
#Transformando la img en bytes | |
pil_im = Image.fromarray(results2.ims[0]) | |
b = io.BytesIO() | |
pil_im.save(b, 'jpeg') | |
im_bytes = b.getvalue() | |
fileImg = tempFileJSON(im_bytes) | |
#Enviando la informacion al contador de especies | |
results6 = qtyEspecies(results5,results3,fileImg) | |
lista2 = arrayLista(results3[19:21],results3[22:32], results3[34:36], results3[37:45]) | |
return Image.fromarray(results2.ims[0]), lista2, results6 | |
except Exception as e: | |
logging.error(e, exc_info=True) | |
#------------ Interface------------- | |
in1 = gr.inputs.Radio(['640', '1280'], label="Tama帽o de la imagen", default='640', type='value') | |
in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.45, label='NMS IoU threshold') | |
in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold') | |
in4 = gr.inputs.Image(type='pil', label="Original Image") | |
out2 = gr.outputs.Image(type="pil", label="Identificaci贸n con Yolov5") | |
out3 = gr.outputs.Dataframe(label="Descripci贸n", headers=['Cantidad','Especie']) | |
out4 = gr.outputs.JSON(label="JSON") | |
#-------------- Text----- | |
title = 'OceanApp' | |
description = """ | |
<p> | |
<center> | |
<p>Sistema para el reconocimiento de las especies en la pesca acompa帽ante de cerco, utilizando redes neuronales convolucionales para una empresa del sector pesquero en los puertos de callao y paracas.</p> | |
<p><b>Nota</b>: Este modelo solo acepta imagenes de <b>Lobos marinos</b> o <b>Pelicanos</b> proporcionados por empresas peruanas.</p> | |
<center> | |
<img src="https://i.pinimg.com/564x/3e/b8/f7/3eb8f7c348dffd7b3dffcafe81fbf2a6.jpg" alt="logo" width="250"/> | |
</center> | |
</center> | |
</p> | |
""" | |
article ="<p style='text-align: center'><a href='' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1j0T8gdLIa0X8fzkIgFpXDoU27BF49RUz?usp=sharing' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/MssLune/OceanApp-Model' target='_blank'>Repo Github</a></p></center></p>" | |
examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']] | |
iface = gr.Interface(yolo, inputs=[in1, in2, in3, in4], outputs=[out2,out3,out4], title=title, description=description, article=article, examples=examples,theme="huggingface", analytics_enabled=False).launch( | |
debug=True, share=True) | |
iface.launch() | |
"""For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36). | |
## Citation | |
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686) | |
""" |