Spaces:
Sleeping
Sleeping
# mostly borrowed from TheStinger/Ilaria_Upscaler spaces. | |
import gradio as gr | |
import cv2 | |
import numpy | |
import os | |
import random | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils.download_util import load_file_from_url | |
from realesrgan import RealESRGANer | |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
def model_params(model_name): | |
if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] | |
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth'] | |
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth'] | |
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | |
netscale = 2 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'] | |
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size) | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
netscale = 4 | |
file_url = [ | |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth', | |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth' | |
] | |
model, netscale, file_url | |
def upscale(image, model_name, tile, denoise, face_enhance, scale): | |
if not image: return | |
model, netscale, file_url = model_params(model_name) | |
model_path = os.path.join('weights', model_name + '.pth') | |
if not os.path.isfile(model_path): | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
for url in file_url: | |
# model_path will be updated | |
model_path = load_file_from_url( | |
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None) | |
dni_weight = None | |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1: | |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3') | |
model_path = [model_path, wdn_model_path] | |
dni_weight = [denoise_strength, 1 - denoise_strength] | |
upsampler = RealESRGANer( | |
scale=netscale, | |
model_path=model_path, | |
dni_weight=dni_weight, | |
model=model, | |
tile=tile, | |
tile_pad=10, | |
pre_pad=10, | |
half=False, | |
gpu_id=None | |
) | |
if face_enhance: | |
from gfpgan import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth', | |
upscale=outscale, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=upsampler) | |
################ | |
cv_img = numpy.array(image) | |
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA) | |
try: | |
if face_enhance: | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
else: | |
output, _ = upsampler.enhance(img, outscale=outscale) | |
except RuntimeError as error: | |
print('Error', error) | |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') | |
return output | |
app = gr.Interface( | |
title='Real-ESRGAN Upscaler', | |
description='Yet another Real-ESRGAN upscaler that uses gradio `Interface`, because why not? It’s not like there are any other options for simplicity and backward compatibility. Oh wait, there are. Never mind.', | |
fn=upscale, | |
inputs=[ | |
gr.Image(label='Source Image', type='pil', image_mode='RGBA'), | |
gr.Dropdown( | |
label='Model', | |
choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B","RealESRGAN_x2plus", "realesr-general-x4v3"], | |
show_label=True, | |
value='RealESRGAN_x4plus_anime_6B' | |
), | |
gr.Slider( | |
label='Tile', | |
minimum=0, | |
maximum=1024, | |
step=32, | |
value=256 | |
), | |
gr.Slider( | |
label='Denoise Strength', | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.5 | |
), | |
gr.Checkbox( | |
label='Face Enhancement (GFPGAN)', | |
value=False, | |
show_label=True | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=2, | |
show_label=True | |
) | |
], | |
outputs=[ | |
gr.Image(label='Upscaled Image', image_mode='RGBA') | |
] | |
) | |
app.launch(show_api=True) |