hesha's picture
Create app.py
87e0d98
raw
history blame
5.33 kB
# mostly borrowed from TheStinger/Ilaria_Upscaler spaces.
import gradio as gr
import cv2
import numpy
import os
import random
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
def model_params(model_name):
if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
]
model, netscale, file_url
def upscale(image, model_name, tile, denoise, face_enhance, scale):
if not image: return
model, netscale, file_url = model_params(model_name)
model_path = os.path.join('weights', model_name + '.pth')
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
# model_path will be updated
model_path = load_file_from_url(
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
dni_weight = None
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
model_path = [model_path, wdn_model_path]
dni_weight = [denoise_strength, 1 - denoise_strength]
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=tile,
tile_pad=10,
pre_pad=10,
half=False,
gpu_id=None
)
if face_enhance:
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler)
################
cv_img = numpy.array(image)
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
try:
if face_enhance:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=outscale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
return output
app = gr.Interface(
title='Real-ESRGAN Upscaler',
description='Yet another Real-ESRGAN upscaler that uses gradio `Interface`, because why not? It’s not like there are any other options for simplicity and backward compatibility. Oh wait, there are. Never mind.',
fn=upscale,
inputs=[
gr.Image(label='Source Image', type='pil', image_mode='RGBA'),
gr.Dropdown(
label='Model',
choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B","RealESRGAN_x2plus", "realesr-general-x4v3"],
show_label=True,
value='RealESRGAN_x4plus_anime_6B'
),
gr.Slider(
label='Tile',
minimum=0,
maximum=1024,
step=32,
value=256
),
gr.Slider(
label='Denoise Strength',
minimum=0,
maximum=1,
step=0.1,
value=0.5
),
gr.Checkbox(
label='Face Enhancement (GFPGAN)',
value=False,
show_label=True
),
gr.Slider(
minimum=1,
maximum=4,
step=1,
value=2,
show_label=True
)
],
outputs=[
gr.Image(label='Upscaled Image', image_mode='RGBA')
]
)
app.launch(show_api=True)