Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
import argparse | |
import torch | |
from clip_interrogator import Config, Interrogator, list_caption_models, list_clip_models | |
try: | |
import gradio as gr | |
except ImportError: | |
print("Gradio is not installed, please install it with 'pip install gradio'") | |
exit(1) | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--lowvram", action='store_true', help="Optimize settings for low VRAM") | |
parser.add_argument('-s', '--share', action='store_true', help='Create a public link') | |
args = parser.parse_args() | |
if not torch.cuda.is_available(): | |
print("CUDA is not available, using CPU. Warning: this will be very slow!") | |
config = Config(cache_path="cache") | |
if args.lowvram: | |
config.apply_low_vram_defaults() | |
ci = Interrogator(config) | |
def image_analysis(image, clip_model_name): | |
if clip_model_name != ci.config.clip_model_name: | |
ci.config.clip_model_name = clip_model_name | |
ci.load_clip_model() | |
image = image.convert('RGB') | |
image_features = ci.image_to_features(image) | |
top_mediums = ci.mediums.rank(image_features, 5) | |
top_artists = ci.artists.rank(image_features, 5) | |
top_movements = ci.movements.rank(image_features, 5) | |
top_trendings = ci.trendings.rank(image_features, 5) | |
top_flavors = ci.flavors.rank(image_features, 5) | |
medium_ranks = {medium: sim for medium, sim in zip(top_mediums, ci.similarities(image_features, top_mediums))} | |
artist_ranks = {artist: sim for artist, sim in zip(top_artists, ci.similarities(image_features, top_artists))} | |
movement_ranks = {movement: sim for movement, sim in zip(top_movements, ci.similarities(image_features, top_movements))} | |
trending_ranks = {trending: sim for trending, sim in zip(top_trendings, ci.similarities(image_features, top_trendings))} | |
flavor_ranks = {flavor: sim for flavor, sim in zip(top_flavors, ci.similarities(image_features, top_flavors))} | |
return medium_ranks, artist_ranks, movement_ranks, trending_ranks, flavor_ranks | |
def image_to_prompt(image, mode, clip_model_name, blip_model_name): | |
if blip_model_name != ci.config.caption_model_name: | |
ci.config.caption_model_name = blip_model_name | |
ci.load_caption_model() | |
if clip_model_name != ci.config.clip_model_name: | |
ci.config.clip_model_name = clip_model_name | |
ci.load_clip_model() | |
image = image.convert('RGB') | |
if mode == 'best': | |
return ci.interrogate(image) | |
elif mode == 'classic': | |
return ci.interrogate_classic(image) | |
elif mode == 'fast': | |
return ci.interrogate_fast(image) | |
elif mode == 'negative': | |
return ci.interrogate_negative(image) | |
def prompt_tab(): | |
with gr.Column(): | |
with gr.Row(): | |
image = gr.Image(type='pil', label="Image") | |
with gr.Column(): | |
mode = gr.Radio(['best', 'fast', 'classic', 'negative'], label='Mode', value='best') | |
clip_model = gr.Dropdown(list_clip_models(), value=ci.config.clip_model_name, label='CLIP Model') | |
blip_model = gr.Dropdown(list_caption_models(), value=ci.config.caption_model_name, label='Caption Model') | |
prompt = gr.Textbox(label="Prompt") | |
button = gr.Button("Generate prompt") | |
button.click(image_to_prompt, inputs=[image, mode, clip_model, blip_model], outputs=prompt) | |
def analyze_tab(): | |
with gr.Column(): | |
with gr.Row(): | |
image = gr.Image(type='pil', label="Image") | |
model = gr.Dropdown(list_clip_models(), value='ViT-L-14/openai', label='CLIP Model') | |
with gr.Row(): | |
medium = gr.Label(label="Medium", num_top_classes=5) | |
artist = gr.Label(label="Artist", num_top_classes=5) | |
movement = gr.Label(label="Movement", num_top_classes=5) | |
trending = gr.Label(label="Trending", num_top_classes=5) | |
flavor = gr.Label(label="Flavor", num_top_classes=5) | |
button = gr.Button("Analyze") | |
button.click(image_analysis, inputs=[image, model], outputs=[medium, artist, movement, trending, flavor]) | |
with gr.Blocks() as ui: | |
gr.Markdown("# <center> CLIP Image2text </center>") | |
with gr.Tab("Prompt"): | |
prompt_tab() | |
with gr.Tab("Analyze"): | |
analyze_tab() | |
ui.launch(show_api=False, debug=True, share=args.share) |