Henry Scheible
initial commit
ec35a33
import cv2
import numpy as np
import math
import torch
import random
from torch.utils.data import DataLoader
from torchvision.transforms import Resize
torch.manual_seed(12345)
random.seed(12345)
np.random.seed(12345)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
class WireframeExtractor:
def __call__(self, image: np.ndarray):
"""
Extract corners of wireframe from a barnacle image
:param image: Numpy RGB image of shape (W, H, 3)
:return [x1, y1, x2, y2]
"""
h, w = image.shape[:2]
imghsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)
lower = np.array([70, 20, 20])
upper = np.array([130, 255, 255])
color_mask = cv2.inRange(hsvblur, lower, upper)
invert = cv2.bitwise_not(color_mask)
contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
max_contour = contours[0]
largest_area = 0
for index, contour in enumerate(contours):
area = cv2.contourArea(contour)
if area > largest_area:
if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
largest_area = area
max_contour = contour
x, y, w, h = cv2.boundingRect(max_contour)
# return [x, y, x + w, y + h]
return x,y,w,h
wireframe_extractor = WireframeExtractor()
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in sorted_anns:
m = ann['segmentation']
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack((img, m*0.35)))
# def find_contours(img, color):
# low = color - 10
# high = color + 10
# mask = cv2.inRange(img, low, high)
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(f"Total Contours: {len(contours)}")
# nonempty_contours = list()
# for i in range(len(contours)):
# if hierarchy[0,i,3] == -1 and cv2.contourArea(contours[i]) > cv2.arcLength(contours[i], True):
# nonempty_contours += [contours[i]]
# print(f"Nonempty Contours: {len(nonempty_contours)}")
# contour_plot = img.copy()
# contour_plot = cv2.drawContours(contour_plot, nonempty_contours, -1, (0,255,0), -1)
# sorted_contours = sorted(nonempty_contours, key=cv2.contourArea, reverse= True)
# bounding_rects = [cv2.boundingRect(cnt) for cnt in contours]
# for (i,c) in enumerate(sorted_contours):
# M= cv2.moments(c)
# cx= int(M['m10']/M['m00'])
# cy= int(M['m01']/M['m00'])
# cv2.putText(contour_plot, text= str(i), org=(cx,cy),
# fontFace= cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255,255,255),
# thickness=1, lineType=cv2.LINE_AA)
# N = len(sorted_contours)
# H, W, C = img.shape
# boxes_array_xywh = [cv2.boundingRect(cnt) for cnt in sorted_contours]
# boxes_array_corners = [[x, y, x+w, y+h] for x, y, w, h in boxes_array_xywh]
# boxes = torch.tensor(boxes_array_corners)
# labels = torch.ones(N)
# masks = np.zeros([N, H, W])
# for idx in range(len(sorted_contours)):
# cnt = sorted_contours[idx]
# cv2.drawContours(masks[idx,:,:], [cnt], 0, (255), -1)
# masks = masks / 255.0
# masks = torch.tensor(masks)
# # for box in boxes:
# # cv2.rectangle(contour_plot, (box[0].item(), box[1].item()), (box[2].item(), box[3].item()), (255,0,0), 2)
# return contour_plot, (boxes, masks)
# def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
# full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0)
# num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1
# num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1
# windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape(
# [1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze()
# dataset_images = [windows[idx] for idx in range(len(windows))]
# dataset = list(dataset_images)
# return dataset
# def get_dataset(labeled_image, blank_image, color, filter_size=50, filter_stride=2, label_size=5):
# contour_plot, (blue_boxes, blue_masks) = find_contours(labeled_image, color)
# mask = torch.sum(blue_masks, 0)
# label_dim = int((labeled_image.shape[0] - filter_size) / filter_stride + 1)
# labels = torch.zeros(label_dim, label_dim)
# mask_labels = torch.zeros(label_dim, label_dim, filter_size, filter_size)
# for lx in range(label_dim):
# for ly in range(label_dim):
# mask_labels[lx, ly, :, :] = mask[
# lx * filter_stride: lx * filter_stride + filter_size,
# ly * filter_stride: ly * filter_stride + filter_size
# ]
# print(labels.shape)
# for box in blue_boxes:
# x = int((box[0] + box[2]) / 2)
# y = int((box[1] + box[3]) / 2)
# window_x = int((x - int(filter_size / 2)) / filter_stride)
# window_y = int((y - int(filter_size / 2)) / filter_stride)
# clamp = lambda n, minn, maxn: max(min(maxn, n), minn)
# labels[
# clamp(window_y - label_size, 0, labels.shape[0] - 1):clamp(window_y + label_size, 0, labels.shape[0] - 1),
# clamp(window_x - label_size, 0, labels.shape[0] - 1):clamp(window_x + label_size, 0, labels.shape[0] - 1),
# ] = 1
# positive_labels = labels.flatten() / labels.max()
# negative_labels = 1 - positive_labels
# pos_mask_labels = torch.flatten(mask_labels, end_dim=1)
# neg_mask_labels = 1 - pos_mask_labels
# mask_labels = torch.stack([pos_mask_labels, neg_mask_labels], dim=1)
# dataset_labels = torch.tensor(list(zip(positive_labels, negative_labels)))
# dataset = list(zip(
# get_dataset_x(blank_image, filter_size=filter_size, filter_stride=filter_stride),
# dataset_labels,
# mask_labels
# ))
# return dataset, (labels, mask_labels)
# from torchvision.models.resnet import resnet50
# from torchvision.models.resnet import ResNet50_Weights
# print("Loading resnet...")
# model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
# hidden_state_size = model.fc.in_features
# model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
# model.to(device)
# model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device(device)))
# model.to(device)
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth")
model.to(device)
predictor = SamPredictor(model)
mask_generator = SamAutomaticMaskGenerator(model)
import gradio as gr
import matplotlib.pyplot as plt
import io
def count_barnacles(image_raw, progress=gr.Progress()):
progress(0, desc="Finding bounding wire")
# crop image
# h, w = raw_input_img.shape[:2]
# imghsv = cv2.cvtColor(raw_input_img, cv2.COLOR_RGB2HSV)
# hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)
# lower = np.array([70, 20, 20])
# upper = np.array([130, 255, 255])
# color_mask = cv2.inRange(hsvblur, lower, upper)
# invert = cv2.bitwise_not(color_mask)
# contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# max_contour = contours[0]
# largest_area = 0
# for index, contour in enumerate(contours):
# area = cv2.contourArea(contour)
# if area > largest_area:
# if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
# largest_area = area
# max_contour = contour
# x, y, w, h = cv2.boundingRect(max_contour)
image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
corners = wireframe_extractor(image)
cropped_image = image[corners[1]:corners[3], corners[0]:corners[2], :]
cropped_image = cropped_image[100:400, 100:400]
# print(cropped_image)
# progress(0, desc="Generating Masks by point in window")
# # get center point of windows
# predictor.set_image(image)
# mask_counter = 0
# masks = []
# for x in range(1,20, 2):
# for y in range(1,20, 2):
# point = np.array([[x*25, y*25]])
# input_label = np.array([1])
# mask, score, logit = predictor.predict(
# point_coords=point,
# point_labels=input_label,
# multimask_output=False,
# )
# if score[0] > 0.8:
# mask_counter += 1
# masks.append(mask)
# return mask_counter
mask_counter = 0
good_masks = []
coords = []
progress(0, desc="Generating Masks")
# masks = mask_generator.generate(cropped_image)
masks = mask_generator.generate(cropped_image)
for mask in masks:
if mask['predicted_iou'] > 0.95:
mask_counter += 1
good_masks.append(mask)
coords.append(mask['point_coords'])
# Create a figure with a size of 10 inches by 10 inches
fig = plt.figure(figsize=(10, 10))
# Display the image using the imshow() function
plt.imshow(cropped_image)
# Call the custom function show_anns() to plot annotations on top of the image
show_anns(good_masks)
# Turn off the axis
plt.axis('off')
# Get the plot as a numpy array
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
# Decode the numpy array to an image
annotated = cv2.imdecode(img_arr, 1)
annotated = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB)
# Close the figure
plt.close(fig)
# cropped_copy = torch.transpose(cropped_image, 0, 2).to("cpu").detach().numpy().copy()
return annotated, mask_counter
# return len(masks)
# progress(0, desc="Resizing Image")
# cropped_img = raw_input_img[x:x+w, y:y+h]
# cropped_image_tensor = torch.transpose(torch.tensor(cropped_img).to(device), 0, 2)
# resize = Resize((1500, 1500))
# input_img = cropped_image_tensor
# blank_img_copy = torch.transpose(input_img, 0, 2).to("cpu").detach().numpy().copy()
# progress(0, desc="Generating Windows")
# test_dataset = get_dataset_x(input_img)
# test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
# model.eval()
# predicted_labels_list = []
# for data in progress.tqdm(test_dataloader):
# with torch.no_grad():
# data = data.to(device)
# predicted_labels_list += [model(data)]
# predicted_labels = torch.cat(predicted_labels_list)
# x = int(math.sqrt(predicted_labels.shape[0]))
# predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
# label_img = predicted_labels[:, :, :1].cpu().numpy()
# label_img -= label_img.min()
# label_img /= label_img.max()
# label_img = (label_img * 255).astype(np.uint8)
# mask = np.array(label_img > 180, np.uint8)
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\
# gt_contours = find_contours(labeled_input_img[x:x+w, y:y+h], cropped_img, np.array([59, 76, 160]))
# def extract_contour_center(cnt):
# M = cv2.moments(cnt)
# cx = int(M['m10'] / M['m00'])
# cy = int(M['m01'] / M['m00'])
# return cx, cy
# filter_width = 50
# filter_stride = 2
# def rev_window_transform(point):
# wx, wy = point
# x = int(filter_width / 2) + wx * filter_stride
# y = int(filter_width / 2) + wy * filter_stride
# return x, y
# nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
# windows = map(extract_contour_center, nonempty_contours)
# points = list(map(rev_window_transform, windows))
# for x, y in points:
# blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
# print(f"pointlist: {len(points)}")
# return blank_img_copy, len(points)
demo = gr.Interface(count_barnacles,
inputs=[
gr.Image(shape=(500, 500), type="numpy", label="Input Image"),
],
outputs=[
gr.Image(shape=(500, 500), type="numpy", label="Annotated Image"),
gr.Number(label="Predicted Number of Barnacles"),
# gr.Number(label="Actual Number of Barnacles"),
# gr.Number(label="Custom Metric")
])
# examples="examples")
demo.queue(concurrency_count=10).launch()