Henry Scheible
commited on
Commit
·
54e4e45
1
Parent(s):
a34b545
change app.py
Browse files
app.py
CHANGED
@@ -66,122 +66,6 @@ def show_anns(anns):
|
|
66 |
img[:,:,i] = color_mask[i]
|
67 |
ax.imshow(np.dstack((img, m*0.35)))
|
68 |
|
69 |
-
|
70 |
-
# def find_contours(img, color):
|
71 |
-
# low = color - 10
|
72 |
-
# high = color + 10
|
73 |
-
|
74 |
-
# mask = cv2.inRange(img, low, high)
|
75 |
-
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
76 |
-
|
77 |
-
# print(f"Total Contours: {len(contours)}")
|
78 |
-
# nonempty_contours = list()
|
79 |
-
# for i in range(len(contours)):
|
80 |
-
# if hierarchy[0,i,3] == -1 and cv2.contourArea(contours[i]) > cv2.arcLength(contours[i], True):
|
81 |
-
# nonempty_contours += [contours[i]]
|
82 |
-
# print(f"Nonempty Contours: {len(nonempty_contours)}")
|
83 |
-
# contour_plot = img.copy()
|
84 |
-
# contour_plot = cv2.drawContours(contour_plot, nonempty_contours, -1, (0,255,0), -1)
|
85 |
-
|
86 |
-
# sorted_contours = sorted(nonempty_contours, key=cv2.contourArea, reverse= True)
|
87 |
-
|
88 |
-
# bounding_rects = [cv2.boundingRect(cnt) for cnt in contours]
|
89 |
-
|
90 |
-
# for (i,c) in enumerate(sorted_contours):
|
91 |
-
# M= cv2.moments(c)
|
92 |
-
# cx= int(M['m10']/M['m00'])
|
93 |
-
# cy= int(M['m01']/M['m00'])
|
94 |
-
# cv2.putText(contour_plot, text= str(i), org=(cx,cy),
|
95 |
-
# fontFace= cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255,255,255),
|
96 |
-
# thickness=1, lineType=cv2.LINE_AA)
|
97 |
-
|
98 |
-
# N = len(sorted_contours)
|
99 |
-
# H, W, C = img.shape
|
100 |
-
# boxes_array_xywh = [cv2.boundingRect(cnt) for cnt in sorted_contours]
|
101 |
-
# boxes_array_corners = [[x, y, x+w, y+h] for x, y, w, h in boxes_array_xywh]
|
102 |
-
# boxes = torch.tensor(boxes_array_corners)
|
103 |
-
|
104 |
-
# labels = torch.ones(N)
|
105 |
-
# masks = np.zeros([N, H, W])
|
106 |
-
# for idx in range(len(sorted_contours)):
|
107 |
-
# cnt = sorted_contours[idx]
|
108 |
-
# cv2.drawContours(masks[idx,:,:], [cnt], 0, (255), -1)
|
109 |
-
# masks = masks / 255.0
|
110 |
-
# masks = torch.tensor(masks)
|
111 |
-
|
112 |
-
# # for box in boxes:
|
113 |
-
# # cv2.rectangle(contour_plot, (box[0].item(), box[1].item()), (box[2].item(), box[3].item()), (255,0,0), 2)
|
114 |
-
|
115 |
-
# return contour_plot, (boxes, masks)
|
116 |
-
|
117 |
-
|
118 |
-
# def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
|
119 |
-
# full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0)
|
120 |
-
# num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1
|
121 |
-
# num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1
|
122 |
-
# windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape(
|
123 |
-
# [1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze()
|
124 |
-
|
125 |
-
# dataset_images = [windows[idx] for idx in range(len(windows))]
|
126 |
-
# dataset = list(dataset_images)
|
127 |
-
# return dataset
|
128 |
-
|
129 |
-
|
130 |
-
# def get_dataset(labeled_image, blank_image, color, filter_size=50, filter_stride=2, label_size=5):
|
131 |
-
# contour_plot, (blue_boxes, blue_masks) = find_contours(labeled_image, color)
|
132 |
-
|
133 |
-
# mask = torch.sum(blue_masks, 0)
|
134 |
-
|
135 |
-
# label_dim = int((labeled_image.shape[0] - filter_size) / filter_stride + 1)
|
136 |
-
# labels = torch.zeros(label_dim, label_dim)
|
137 |
-
# mask_labels = torch.zeros(label_dim, label_dim, filter_size, filter_size)
|
138 |
-
|
139 |
-
# for lx in range(label_dim):
|
140 |
-
# for ly in range(label_dim):
|
141 |
-
# mask_labels[lx, ly, :, :] = mask[
|
142 |
-
# lx * filter_stride: lx * filter_stride + filter_size,
|
143 |
-
# ly * filter_stride: ly * filter_stride + filter_size
|
144 |
-
# ]
|
145 |
-
|
146 |
-
# print(labels.shape)
|
147 |
-
# for box in blue_boxes:
|
148 |
-
# x = int((box[0] + box[2]) / 2)
|
149 |
-
# y = int((box[1] + box[3]) / 2)
|
150 |
-
|
151 |
-
# window_x = int((x - int(filter_size / 2)) / filter_stride)
|
152 |
-
# window_y = int((y - int(filter_size / 2)) / filter_stride)
|
153 |
-
|
154 |
-
# clamp = lambda n, minn, maxn: max(min(maxn, n), minn)
|
155 |
-
|
156 |
-
# labels[
|
157 |
-
# clamp(window_y - label_size, 0, labels.shape[0] - 1):clamp(window_y + label_size, 0, labels.shape[0] - 1),
|
158 |
-
# clamp(window_x - label_size, 0, labels.shape[0] - 1):clamp(window_x + label_size, 0, labels.shape[0] - 1),
|
159 |
-
# ] = 1
|
160 |
-
|
161 |
-
# positive_labels = labels.flatten() / labels.max()
|
162 |
-
# negative_labels = 1 - positive_labels
|
163 |
-
# pos_mask_labels = torch.flatten(mask_labels, end_dim=1)
|
164 |
-
# neg_mask_labels = 1 - pos_mask_labels
|
165 |
-
# mask_labels = torch.stack([pos_mask_labels, neg_mask_labels], dim=1)
|
166 |
-
# dataset_labels = torch.tensor(list(zip(positive_labels, negative_labels)))
|
167 |
-
# dataset = list(zip(
|
168 |
-
# get_dataset_x(blank_image, filter_size=filter_size, filter_stride=filter_stride),
|
169 |
-
# dataset_labels,
|
170 |
-
# mask_labels
|
171 |
-
# ))
|
172 |
-
# return dataset, (labels, mask_labels)
|
173 |
-
|
174 |
-
|
175 |
-
# from torchvision.models.resnet import resnet50
|
176 |
-
# from torchvision.models.resnet import ResNet50_Weights
|
177 |
-
|
178 |
-
# print("Loading resnet...")
|
179 |
-
# model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
|
180 |
-
# hidden_state_size = model.fc.in_features
|
181 |
-
# model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
|
182 |
-
# model.to(device)
|
183 |
-
# model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device(device)))
|
184 |
-
# model.to(device)
|
185 |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
|
186 |
|
187 |
model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth")
|
@@ -215,72 +99,14 @@ def check_circularity(segmentation):
|
|
215 |
def count_barnacles(image_raw, split_num, progress=gr.Progress()):
|
216 |
progress(0, desc="Finding bounding wire")
|
217 |
|
218 |
-
# crop image
|
219 |
-
# h, w = raw_input_img.shape[:2]
|
220 |
-
# imghsv = cv2.cvtColor(raw_input_img, cv2.COLOR_RGB2HSV)
|
221 |
-
# hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)
|
222 |
-
|
223 |
-
# lower = np.array([70, 20, 20])
|
224 |
-
# upper = np.array([130, 255, 255])
|
225 |
-
|
226 |
-
# color_mask = cv2.inRange(hsvblur, lower, upper)
|
227 |
-
|
228 |
-
# invert = cv2.bitwise_not(color_mask)
|
229 |
-
|
230 |
-
# contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
231 |
-
|
232 |
-
# max_contour = contours[0]
|
233 |
-
# largest_area = 0
|
234 |
-
# for index, contour in enumerate(contours):
|
235 |
-
# area = cv2.contourArea(contour)
|
236 |
-
# if area > largest_area:
|
237 |
-
# if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
|
238 |
-
# largest_area = area
|
239 |
-
# max_contour = contour
|
240 |
-
|
241 |
-
# x, y, w, h = cv2.boundingRect(max_contour)
|
242 |
-
|
243 |
-
|
244 |
-
# image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
|
245 |
-
# image = Image.fromarray(image_raw)
|
246 |
-
# image = image[:,:,::-1]
|
247 |
-
# image = image_raw
|
248 |
-
# print(image.shape)
|
249 |
-
# print(type(image))
|
250 |
-
# print(image.dtype)
|
251 |
-
# print(image)
|
252 |
corners = wireframe_extractor(image_raw)
|
253 |
print(corners) # (0, 0, 1254, 1152)
|
254 |
|
255 |
cropped_image = image_raw[corners[1]:corners[3]+corners[1], corners[0]:corners[2]+corners[0], :]
|
256 |
|
257 |
print(cropped_image.shape)
|
258 |
-
# cropped_image = cropped_image[100:400, 100:400]
|
259 |
-
# print(cropped_image)
|
260 |
|
261 |
-
|
262 |
-
# progress(0, desc="Generating Masks by point in window")
|
263 |
-
|
264 |
-
# # get center point of windows
|
265 |
-
# predictor.set_image(image)
|
266 |
-
# mask_counter = 0
|
267 |
-
# masks = []
|
268 |
-
|
269 |
-
# for x in range(1,20, 2):
|
270 |
-
# for y in range(1,20, 2):
|
271 |
-
# point = np.array([[x*25, y*25]])
|
272 |
-
# input_label = np.array([1])
|
273 |
-
# mask, score, logit = predictor.predict(
|
274 |
-
# point_coords=point,
|
275 |
-
# point_labels=input_label,
|
276 |
-
# multimask_output=False,
|
277 |
-
# )
|
278 |
-
# if score[0] > 0.8:
|
279 |
-
# mask_counter += 1
|
280 |
-
# masks.append(mask)
|
281 |
-
|
282 |
-
# return mask_counter
|
283 |
-
split_num = 2
|
284 |
|
285 |
x_inc = int(cropped_image.shape[0]/split_num)
|
286 |
y_inc = int(cropped_image.shape[1]/split_num)
|
@@ -301,23 +127,17 @@ def count_barnacles(image_raw, split_num, progress=gr.Progress()):
|
|
301 |
# plt.figure()
|
302 |
# plt.imshow(small_image)
|
303 |
# plt.axis('on')
|
304 |
-
|
|
|
|
|
305 |
masks = mask_generator.generate(small_image)
|
306 |
-
|
307 |
|
308 |
-
for mask in masks:
|
|
|
309 |
circular = check_circularity(mask['segmentation'])
|
310 |
if circular and mask['area']>500 and mask['area'] < 10000:
|
311 |
mask_counter += 1
|
312 |
-
# if cropped_image.shape != image_raw.shape:
|
313 |
-
# add_to_row = [False] * corners[0]
|
314 |
-
# temp = [False]*(corners[2]+corners[0])
|
315 |
-
# temp = [temp]*corners[1]
|
316 |
-
# new_seg = np.array(temp)
|
317 |
-
# for row in mask['segmentation']:
|
318 |
-
# row = np.append(add_to_row, row)
|
319 |
-
# new_seg = np.vstack([new_seg, row])
|
320 |
-
# mask['segmentation'] = new_seg
|
321 |
good_masks.append(mask)
|
322 |
box = mask['bbox']
|
323 |
centers.append((box[0] + box[2]/2 + corners[0] + startx, box[1] + box[3]/2 + corners[1] + starty))
|
@@ -358,63 +178,6 @@ def count_barnacles(image_raw, split_num, progress=gr.Progress()):
|
|
358 |
# return annotated, mask_counter, centers
|
359 |
return fig, mask_counter, centers
|
360 |
|
361 |
-
|
362 |
-
# return len(masks)
|
363 |
-
|
364 |
-
# progress(0, desc="Resizing Image")
|
365 |
-
# cropped_img = raw_input_img[x:x+w, y:y+h]
|
366 |
-
# cropped_image_tensor = torch.transpose(torch.tensor(cropped_img).to(device), 0, 2)
|
367 |
-
# resize = Resize((1500, 1500))
|
368 |
-
# input_img = cropped_image_tensor
|
369 |
-
# blank_img_copy = torch.transpose(input_img, 0, 2).to("cpu").detach().numpy().copy()
|
370 |
-
|
371 |
-
# progress(0, desc="Generating Windows")
|
372 |
-
# test_dataset = get_dataset_x(input_img)
|
373 |
-
# test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
|
374 |
-
# model.eval()
|
375 |
-
# predicted_labels_list = []
|
376 |
-
# for data in progress.tqdm(test_dataloader):
|
377 |
-
# with torch.no_grad():
|
378 |
-
# data = data.to(device)
|
379 |
-
# predicted_labels_list += [model(data)]
|
380 |
-
# predicted_labels = torch.cat(predicted_labels_list)
|
381 |
-
# x = int(math.sqrt(predicted_labels.shape[0]))
|
382 |
-
# predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
|
383 |
-
# label_img = predicted_labels[:, :, :1].cpu().numpy()
|
384 |
-
# label_img -= label_img.min()
|
385 |
-
# label_img /= label_img.max()
|
386 |
-
# label_img = (label_img * 255).astype(np.uint8)
|
387 |
-
# mask = np.array(label_img > 180, np.uint8)
|
388 |
-
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\
|
389 |
-
|
390 |
-
# gt_contours = find_contours(labeled_input_img[x:x+w, y:y+h], cropped_img, np.array([59, 76, 160]))
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
# def extract_contour_center(cnt):
|
395 |
-
# M = cv2.moments(cnt)
|
396 |
-
# cx = int(M['m10'] / M['m00'])
|
397 |
-
# cy = int(M['m01'] / M['m00'])
|
398 |
-
# return cx, cy
|
399 |
-
|
400 |
-
# filter_width = 50
|
401 |
-
# filter_stride = 2
|
402 |
-
|
403 |
-
# def rev_window_transform(point):
|
404 |
-
# wx, wy = point
|
405 |
-
# x = int(filter_width / 2) + wx * filter_stride
|
406 |
-
# y = int(filter_width / 2) + wy * filter_stride
|
407 |
-
# return x, y
|
408 |
-
|
409 |
-
# nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
|
410 |
-
# windows = map(extract_contour_center, nonempty_contours)
|
411 |
-
# points = list(map(rev_window_transform, windows))
|
412 |
-
# for x, y in points:
|
413 |
-
# blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
|
414 |
-
# print(f"pointlist: {len(points)}")
|
415 |
-
# return blank_img_copy, len(points)
|
416 |
-
|
417 |
-
|
418 |
demo = gr.Interface(count_barnacles,
|
419 |
inputs=[
|
420 |
gr.Image(type="numpy", label="Input Image"),
|
|
|
66 |
img[:,:,i] = color_mask[i]
|
67 |
ax.imshow(np.dstack((img, m*0.35)))
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
|
70 |
|
71 |
model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth")
|
|
|
99 |
def count_barnacles(image_raw, split_num, progress=gr.Progress()):
|
100 |
progress(0, desc="Finding bounding wire")
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
corners = wireframe_extractor(image_raw)
|
103 |
print(corners) # (0, 0, 1254, 1152)
|
104 |
|
105 |
cropped_image = image_raw[corners[1]:corners[3]+corners[1], corners[0]:corners[2]+corners[0], :]
|
106 |
|
107 |
print(cropped_image.shape)
|
|
|
|
|
108 |
|
109 |
+
split_num = 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
x_inc = int(cropped_image.shape[0]/split_num)
|
112 |
y_inc = int(cropped_image.shape[1]/split_num)
|
|
|
127 |
# plt.figure()
|
128 |
# plt.imshow(small_image)
|
129 |
# plt.axis('on')
|
130 |
+
progress(0, desc=f"Encoding crop {r*split_num + c}/{split_num ** 2}")
|
131 |
+
mask_generator.predictor.set_image(small_image)
|
132 |
+
progress(0, desc=f"Generating masks for crop {r*split_num + c}/{split_num ** 2}")
|
133 |
masks = mask_generator.generate(small_image)
|
134 |
+
num_masks = len(masks)
|
135 |
|
136 |
+
for idx, mask in enumerate(masks):
|
137 |
+
progress(float(idx)/float(num_masks), desc=f"Processing masks for crop {r*split_num + c}/{split_num ** 2}")
|
138 |
circular = check_circularity(mask['segmentation'])
|
139 |
if circular and mask['area']>500 and mask['area'] < 10000:
|
140 |
mask_counter += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
good_masks.append(mask)
|
142 |
box = mask['bbox']
|
143 |
centers.append((box[0] + box[2]/2 + corners[0] + startx, box[1] + box[3]/2 + corners[1] + starty))
|
|
|
178 |
# return annotated, mask_counter, centers
|
179 |
return fig, mask_counter, centers
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
demo = gr.Interface(count_barnacles,
|
182 |
inputs=[
|
183 |
gr.Image(type="numpy", label="Input Image"),
|