YOLO / yolo /tools /solver.py
henry000's picture
πŸ”€ [Merge] branch 'DEPLOY' into TEST
bfba0a7
raw
history blame
7.63 kB
import json
import os
import time
import torch
from loguru import logger
from torch import Tensor
# TODO: We may can't use CUDA?
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from yolo.config.config import Config, TrainConfig, ValidationConfig
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader, create_dataloader
from yolo.tools.drawer import draw_bboxes, draw_model
from yolo.tools.loss_functions import create_loss_function
from yolo.utils.bounding_box_utils import Vec2Box
from yolo.utils.logging_utils import ProgressLogger, log_model_structure
from yolo.utils.model_utils import (
ExponentialMovingAverage,
PostProccess,
create_optimizer,
create_scheduler,
predicts_to_json,
)
class ModelTrainer:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device, use_ddp: bool):
train_cfg: TrainConfig = cfg.task
self.model = model if not use_ddp else DDP(model, device_ids=[device])
self.use_ddp = use_ddp
self.vec2box = vec2box
self.device = device
self.optimizer = create_optimizer(model, train_cfg.optimizer)
self.scheduler = create_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = create_loss_function(cfg, vec2box)
self.progress = progress
self.num_epochs = cfg.task.epoch
if not progress.quite_mode:
log_model_structure(model.model)
draw_model(model=model)
self.validation_dataloader = create_dataloader(
cfg.task.validation.data, cfg.dataset, cfg.task.validation.task, use_ddp
)
self.validator = ModelValidator(cfg.task.validation, model, vec2box, progress, device)
if getattr(train_cfg.ema, "enabled", False):
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
else:
self.ema = None
self.scaler = GradScaler()
def train_one_batch(self, images: Tensor, targets: Tensor):
images, targets = images.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
with autocast():
predicts = self.model(images)
aux_predicts = self.vec2box(predicts["AUX"])
main_predicts = self.vec2box(predicts["Main"])
loss, loss_item = self.loss_fn(aux_predicts, main_predicts, targets)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
return loss.item(), loss_item
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = 0
for images, targets, *_ in dataloader:
loss, loss_each = self.train_one_batch(images, targets)
total_loss += loss
self.progress.one_batch(loss_each)
if self.scheduler:
self.scheduler.step()
return total_loss / len(dataloader)
def save_checkpoint(self, epoch: int, filename="checkpoint.pt"):
checkpoint = {
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
torch.save(checkpoint, filename)
def solve(self, dataloader: DataLoader):
logger.info("πŸš„ Start Training!")
num_epochs = self.num_epochs
self.progress.start_train(num_epochs)
for epoch in range(num_epochs):
if self.use_ddp:
dataloader.sampler.set_epoch(epoch)
self.progress.start_one_epoch(len(dataloader), self.optimizer, epoch)
# TODO: calculate epoch loss
epoch_loss = self.train_one_epoch(dataloader)
self.progress.finish_one_epoch()
self.validator.solve(self.validation_dataloader)
class ModelTester:
def __init__(self, cfg: Config, model: YOLO, vec2box: Vec2Box, progress: ProgressLogger, device):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, cfg.task.nms)
self.save_path = os.path.join(progress.save_path, "images")
os.makedirs(self.save_path, exist_ok=True)
self.save_predict = getattr(cfg.task, "save_predict", None)
self.idx2label = cfg.class_list
def solve(self, dataloader: StreamDataLoader):
logger.info("πŸ‘€ Start Inference!")
if isinstance(self.model, torch.nn.Module):
self.model.eval()
if dataloader.is_stream:
import cv2
import numpy as np
last_time = time.time()
try:
for idx, (images, rev_tensor, origin_frame) in enumerate(dataloader):
images = images.to(self.device)
rev_tensor = rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts, rev_tensor)
img = draw_bboxes(origin_frame, predicts, idx2label=self.idx2label)
if dataloader.is_stream:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
fps = 1 / (time.time() - last_time)
cv2.putText(img, f"FPS: {fps:.2f}", (0, 15), 0, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
last_time = time.time()
cv2.imshow("Prediction", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if not self.save_predict:
continue
if self.save_predict != False:
save_image_path = os.path.join(self.save_path, f"frame{idx:03d}.png")
img.save(save_image_path)
logger.info(f"πŸ’Ύ Saved visualize image at {save_image_path}")
except (KeyboardInterrupt, Exception) as e:
dataloader.stop_event.set()
dataloader.stop()
if isinstance(e, KeyboardInterrupt):
logger.error("User Keyboard Interrupt")
else:
raise e
dataloader.stop()
class ModelValidator:
def __init__(
self,
validation_cfg: ValidationConfig,
model: YOLO,
vec2box: Vec2Box,
progress: ProgressLogger,
device,
):
self.model = model
self.device = device
self.progress = progress
self.post_proccess = PostProccess(vec2box, validation_cfg.nms)
self.json_path = os.path.join(self.progress.save_path, f"predict.json")
def solve(self, dataloader):
# logger.info("πŸ§ͺ Start Validation!")
self.model.eval()
predict_json = []
self.progress.start_one_epoch(len(dataloader))
for images, targets, rev_tensor, img_paths in dataloader:
images, targets, rev_tensor = images.to(self.device), targets.to(self.device), rev_tensor.to(self.device)
with torch.no_grad():
predicts = self.model(images)
predicts = self.post_proccess(predicts, rev_tensor)
self.progress.one_batch()
predict_json.extend(predicts_to_json(img_paths, predicts))
self.progress.finish_one_epoch()
with open(self.json_path, "w") as f:
json.dump(predict_json, f)