YOLO / yolo /utils /data_augment.py
henry000's picture
🚚 [Move] All model code to yolo/
1197f7d
raw
history blame
4.16 kB
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import functional as TF
class Compose:
"""Composes several transforms together."""
def __init__(self, transforms, image_size: int = 640):
self.transforms = transforms
self.image_size = image_size
for transform in self.transforms:
if hasattr(transform, "set_parent"):
transform.set_parent(self)
def __call__(self, image, boxes):
for transform in self.transforms:
image, boxes = transform(image, boxes)
return image, boxes
class HorizontalFlip:
"""Randomly horizontally flips the image along with the bounding boxes."""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, image, boxes):
if torch.rand(1) < self.prob:
image = TF.hflip(image)
boxes[:, [1, 3]] = 1 - boxes[:, [3, 1]]
return image, boxes
class VerticalFlip:
"""Randomly vertically flips the image along with the bounding boxes."""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, image, boxes):
if torch.rand(1) < self.prob:
image = TF.vflip(image)
boxes[:, [2, 4]] = 1 - boxes[:, [4, 2]]
return image, boxes
class Mosaic:
"""Applies the Mosaic augmentation to a batch of images and their corresponding boxes."""
def __init__(self, prob=0.5):
self.prob = prob
self.parent = None
def set_parent(self, parent):
self.parent = parent
def __call__(self, image, boxes):
if torch.rand(1) >= self.prob:
return image, boxes
assert self.parent is not None, "Parent is not set. Mosaic cannot retrieve image size."
img_sz = self.parent.image_size # Assuming `image_size` is defined in parent
more_data = self.parent.get_more_data(3) # get 3 more images randomly
data = [(image, boxes)] + more_data
mosaic_image = Image.new("RGB", (2 * img_sz, 2 * img_sz))
vectors = np.array([(-1, -1), (0, -1), (-1, 0), (0, 0)])
center = np.array([img_sz, img_sz])
all_labels = []
for (image, boxes), vector in zip(data, vectors):
this_w, this_h = image.size
coord = tuple(center + vector * np.array([this_w, this_h]))
mosaic_image.paste(image, coord)
xmin, ymin, xmax, ymax = boxes[:, 1], boxes[:, 2], boxes[:, 3], boxes[:, 4]
xmin = (xmin * this_w + coord[0]) / (2 * img_sz)
xmax = (xmax * this_w + coord[0]) / (2 * img_sz)
ymin = (ymin * this_h + coord[1]) / (2 * img_sz)
ymax = (ymax * this_h + coord[1]) / (2 * img_sz)
adjusted_boxes = torch.stack([boxes[:, 0], xmin, ymin, xmax, ymax], dim=1)
all_labels.append(adjusted_boxes)
all_labels = torch.cat(all_labels, dim=0)
mosaic_image = mosaic_image.resize((img_sz, img_sz))
return mosaic_image, all_labels
class MixUp:
"""Applies the MixUp augmentation to a pair of images and their corresponding boxes."""
def __init__(self, prob=0.5, alpha=1.0):
self.alpha = alpha
self.prob = prob
self.parent = None
def set_parent(self, parent):
"""Set the parent dataset object for accessing dataset methods."""
self.parent = parent
def __call__(self, image, boxes):
if torch.rand(1) >= self.prob:
return image, boxes
assert self.parent is not None, "Parent is not set. MixUp cannot retrieve additional data."
# Retrieve another image and its boxes randomly from the dataset
image2, boxes2 = self.parent.get_more_data()[0]
# Calculate the mixup lambda parameter
lam = np.random.beta(self.alpha, self.alpha) if self.alpha > 0 else 0.5
# Mix images
image1, image2 = TF.to_tensor(image), TF.to_tensor(image2)
mixed_image = lam * image1 + (1 - lam) * image2
# Mix bounding boxes
mixed_boxes = torch.cat([lam * boxes, (1 - lam) * boxes2])
return TF.to_pil_image(mixed_image), mixed_boxes