|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from torchvision.transforms import functional as TF |
|
|
|
|
|
class AugmentationComposer: |
|
"""Composes several transforms together.""" |
|
|
|
def __init__(self, transforms, image_size: int = [640, 640]): |
|
self.transforms = transforms |
|
|
|
self.image_size = image_size[0] |
|
self.pad_resize = PadAndResize(self.image_size) |
|
|
|
for transform in self.transforms: |
|
if hasattr(transform, "set_parent"): |
|
transform.set_parent(self) |
|
|
|
def __call__(self, image, boxes): |
|
for transform in self.transforms: |
|
image, boxes = transform(image, boxes) |
|
image, boxes = self.pad_resize(image, boxes) |
|
image = TF.to_tensor(image) |
|
return image, boxes |
|
|
|
|
|
class PadAndResize: |
|
def __init__(self, image_size): |
|
"""Initialize the object with the target image size.""" |
|
self.image_size = image_size |
|
|
|
def __call__(self, image, boxes): |
|
original_size = max(image.size) |
|
scale = self.image_size / original_size |
|
square_img = Image.new("RGB", (original_size, original_size), (255, 255, 255)) |
|
left = (original_size - image.width) // 2 |
|
top = (original_size - image.height) // 2 |
|
square_img.paste(image, (left, top)) |
|
|
|
resized_img = square_img.resize((self.image_size, self.image_size)) |
|
|
|
boxes[:, 1] = (boxes[:, 1] * image.width + left) / self.image_size * scale |
|
boxes[:, 2] = (boxes[:, 2] * image.height + top) / self.image_size * scale |
|
boxes[:, 3] = (boxes[:, 3] * image.width + left) / self.image_size * scale |
|
boxes[:, 4] = (boxes[:, 4] * image.height + top) / self.image_size * scale |
|
|
|
return resized_img, boxes |
|
|
|
|
|
class HorizontalFlip: |
|
"""Randomly horizontally flips the image along with the bounding boxes.""" |
|
|
|
def __init__(self, prob=0.5): |
|
self.prob = prob |
|
|
|
def __call__(self, image, boxes): |
|
if torch.rand(1) < self.prob: |
|
image = TF.hflip(image) |
|
boxes[:, [1, 3]] = 1 - boxes[:, [3, 1]] |
|
return image, boxes |
|
|
|
|
|
class VerticalFlip: |
|
"""Randomly vertically flips the image along with the bounding boxes.""" |
|
|
|
def __init__(self, prob=0.5): |
|
self.prob = prob |
|
|
|
def __call__(self, image, boxes): |
|
if torch.rand(1) < self.prob: |
|
image = TF.vflip(image) |
|
boxes[:, [2, 4]] = 1 - boxes[:, [4, 2]] |
|
return image, boxes |
|
|
|
|
|
class Mosaic: |
|
"""Applies the Mosaic augmentation to a batch of images and their corresponding boxes.""" |
|
|
|
def __init__(self, prob=0.5): |
|
self.prob = prob |
|
self.parent = None |
|
|
|
def set_parent(self, parent): |
|
self.parent = parent |
|
|
|
def __call__(self, image, boxes): |
|
if torch.rand(1) >= self.prob: |
|
return image, boxes |
|
|
|
assert self.parent is not None, "Parent is not set. Mosaic cannot retrieve image size." |
|
|
|
img_sz = self.parent.image_size |
|
more_data = self.parent.get_more_data(3) |
|
|
|
data = [(image, boxes)] + more_data |
|
mosaic_image = Image.new("RGB", (2 * img_sz, 2 * img_sz)) |
|
vectors = np.array([(-1, -1), (0, -1), (-1, 0), (0, 0)]) |
|
center = np.array([img_sz, img_sz]) |
|
all_labels = [] |
|
|
|
for (image, boxes), vector in zip(data, vectors): |
|
this_w, this_h = image.size |
|
coord = tuple(center + vector * np.array([this_w, this_h])) |
|
|
|
mosaic_image.paste(image, coord) |
|
xmin, ymin, xmax, ymax = boxes[:, 1], boxes[:, 2], boxes[:, 3], boxes[:, 4] |
|
xmin = (xmin * this_w + coord[0]) / (2 * img_sz) |
|
xmax = (xmax * this_w + coord[0]) / (2 * img_sz) |
|
ymin = (ymin * this_h + coord[1]) / (2 * img_sz) |
|
ymax = (ymax * this_h + coord[1]) / (2 * img_sz) |
|
|
|
adjusted_boxes = torch.stack([boxes[:, 0], xmin, ymin, xmax, ymax], dim=1) |
|
all_labels.append(adjusted_boxes) |
|
|
|
all_labels = torch.cat(all_labels, dim=0) |
|
mosaic_image = mosaic_image.resize((img_sz, img_sz)) |
|
return mosaic_image, all_labels |
|
|
|
|
|
class MixUp: |
|
"""Applies the MixUp augmentation to a pair of images and their corresponding boxes.""" |
|
|
|
def __init__(self, prob=0.5, alpha=1.0): |
|
self.alpha = alpha |
|
self.prob = prob |
|
self.parent = None |
|
|
|
def set_parent(self, parent): |
|
"""Set the parent dataset object for accessing dataset methods.""" |
|
self.parent = parent |
|
|
|
def __call__(self, image, boxes): |
|
if torch.rand(1) >= self.prob: |
|
return image, boxes |
|
|
|
assert self.parent is not None, "Parent is not set. MixUp cannot retrieve additional data." |
|
|
|
|
|
image2, boxes2 = self.parent.get_more_data()[0] |
|
|
|
|
|
lam = np.random.beta(self.alpha, self.alpha) if self.alpha > 0 else 0.5 |
|
|
|
|
|
image1, image2 = TF.to_tensor(image), TF.to_tensor(image2) |
|
mixed_image = lam * image1 + (1 - lam) * image2 |
|
|
|
|
|
mixed_boxes = torch.cat([lam * boxes, (1 - lam) * boxes2]) |
|
|
|
return TF.to_pil_image(mixed_image), mixed_boxes |
|
|