Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import gradio as gr | |
| from transformers import pipeline | |
| from diffusers import StableDiffusionPipeline | |
| # 如果需要使用 Hugging Face 访问令牌,取消下面两行的注释并设置环境变量 HUGGINGFACE_TOKEN | |
| # from huggingface_hub import login | |
| # login(token=os.getenv("HUGGINGFACE_TOKEN")) | |
| # Step 1: Prompt-to-Prompt 模块,使用 Flan - T5 生成结构化提示词 | |
| llm = pipeline( | |
| task="text2text-generation", | |
| model="google/flan-t5-large", | |
| device=0 if torch.cuda.is_available() else -1 | |
| ) | |
| # Step 2: 加载 Stable Diffusion 模型 | |
| # 移除无效的 revision 参数,仅使用 torch_dtype 加速加载 | |
| sd_v15 = StableDiffusionPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", | |
| torch_dtype=torch.float16 | |
| ) | |
| sd_v15 = sd_v15.to("cuda" if torch.cuda.is_available() else "cpu") | |
| sd_xl = StableDiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0" | |
| ) | |
| sd_xl = sd_xl.to("cuda" if torch.cuda.is_available() else "cpu") | |
| # 可选:语音输入模块,使用 Whisper | |
| asr = pipeline( | |
| task="automatic-speech-recognition", | |
| model="openai/whisper-base", | |
| device=0 if torch.cuda.is_available() else -1 | |
| ) | |
| def transcribe(audio_path): | |
| """ | |
| 对音频文件进行转录 | |
| :param audio_path: 音频文件路径 | |
| :return: 转录后的文本 | |
| """ | |
| text = asr(audio_path)["text"] | |
| return text | |
| def generate(description, model_choice, guidance_scale, negative_prompt, style): | |
| """ | |
| 根据输入生成图像 | |
| :param description: 文本描述 | |
| :param model_choice: 选择的模型 | |
| :param guidance_scale: 引导比例 | |
| :param negative_prompt: 反向提示词 | |
| :param style: 选择的风格 | |
| :return: 生成的提示词和图像 | |
| """ | |
| # 构造给 LLM 的指令 | |
| instruction = ( | |
| f"请将以下简短描述扩展为 Stable Diffusion 友好的提示词,包含细节和风格:\n" | |
| f"描述: '{description}'\n" | |
| f"风格: '{style}'" | |
| ) | |
| result = llm(instruction, max_length=128)[0]["generated_text"].strip() | |
| prompt = result | |
| # 根据模型选择生成图像 | |
| pipeline_model = sd_xl if model_choice == "SDXL" else sd_v15 | |
| image = pipeline_model( | |
| prompt, | |
| guidance_scale=guidance_scale, | |
| negative_prompt=negative_prompt | |
| ).images[0] | |
| return prompt, image | |
| # Step 3: 构建 Gradio 界面 | |
| with gr.Blocks(title="Prompt-to-Image Generator") as demo: | |
| gr.Markdown("## 基于 LLM 的提示词生成与 Stable Diffusion 图像生成") | |
| with gr.Row(): | |
| with gr.Column(): | |
| desc_input = gr.Textbox(label="文本描述", placeholder="Example:blue sky") | |
| style_dropdown = gr.Dropdown( | |
| choices=["Fancy", "Science", "Reality"], | |
| label="choice" | |
| ) | |
| model_radio = gr.Radio( | |
| choices=["SD v1.5", "SDXL"], | |
| value="SD v1.5", | |
| label="choice" | |
| ) | |
| guidance_slider = gr.Slider( | |
| minimum=0, maximum=20, step=0.5, value=7.5, | |
| label="Guidance Scale" | |
| ) | |
| neg_text = gr.Textbox( | |
| label="reverse_prompt", | |
| ) | |
| use_voice = gr.Checkbox(label="voice_input") | |
| audio_input = gr.Audio(type="filepath", label="voice_input") | |
| generate_btn = gr.Button("generate") | |
| with gr.Column(): | |
| prompt_output = gr.Textbox(label="generated prompt") | |
| image_output = gr.Image(label="generated word") | |
| # 绑定语音转文字(仅当启用时) | |
| def conditional_transcribe(audio_path, use_voice_flag): | |
| return transcribe(audio_path) if use_voice_flag else None | |
| audio_input.change( | |
| fn=conditional_transcribe, | |
| inputs=[audio_input, use_voice], | |
| outputs=desc_input | |
| ) | |
| # 点击按钮生成提示词并绘图 | |
| generate_btn.click( | |
| fn=generate, | |
| inputs=[desc_input, model_radio, guidance_slider, neg_text, style_dropdown], | |
| outputs=[prompt_output, image_output] | |
| ) | |
| # Step 4: 启动应用 | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |