all-in-one / app.py
helloWorld199's picture
fixed model import
5197abc verified
import gradio as gr
import os
import allin1
import time
import json
import torch
import librosa
import numpy as np
from pathlib import Path
HEADER = """
<header style="text-align: center;">
<h1>
All-In-One Music Structure Analyzer 🔮
</h1>
<p>
<a href="https://github.com/mir-aidj/all-in-one">[Python Package]</a>
<a href="https://arxiv.org/abs/2307.16425">[Paper]</a>
<a href="https://taejun.kim/music-dissector/">[Visual Demo]</a>
</p>
</header>
<main
style="display: flex; justify-content: center;"
>
<div
style="display: inline-block;"
>
<p>
This Space demonstrates the music structure analyzer predicts:
<ul
style="padding-left: 1rem;"
>
<li>BPM</li>
<li>Beats</li>
<li>Downbeats</li>
<li>Functional segment boundaries</li>
<li>Functional segment labels (e.g. intro, verse, chorus, bridge, outro)</li>
</ul>
</p>
<p>
For more information, please visit the links above ✨🧸
</p>
</div>
</main>
"""
CACHE_EXAMPLES = os.getenv('CACHE_EXAMPLES', '1') == '1'
base_dir = "/tmp/gradio/"
# Defining sample rate for voice activity detection (must use multiple of 8k)
SAMPLING_RATE = 32000
torch.set_num_threads(1)
# Import of models to do voice detection
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad:v4.0',
model='silero_vad',
force_reload=True)
(get_speech_timestamps,
save_audio,
read_audio,
VADIterator,
collect_chunks) = utils
def analyze(path):
#Measure time for inference
start = time.time()
string_path = path
path = Path(path)
result= allin1.analyze(
path,
out_dir='./struct',
multiprocess=False,
keep_byproducts=True, # TODO: remove this
)
json_structure_output = None
for root, dirs, files in os.walk(f"./struct"):
for file_path in files:
json_structure_output = os.path.join(root, file_path)
print(json_structure_output)
add_voice_label(json_structure_output, string_path)
fig = allin1.visualize(
result,
multiprocess=False,
)
fig.set_dpi(300)
#allin1.sonify(
# result,
# out_dir='./sonif',
# multiprocess=False,
#)
#sonif_path = Path(f'./sonif/{path.stem}.sonif{path.suffix}').resolve().as_posix()
#Measure time for inference
end = time.time()
elapsed_time = end-start
# Get the base name of the file
file_name = os.path.basename(path)
# Remove the extension from the file name
file_name_without_extension = os.path.splitext(file_name)[0]
print(file_name_without_extension)
bass_path, drums_path, other_path, vocals_path = None, None, None, None
for root, dirs, files in os.walk(f"./demix/htdemucs/{file_name_without_extension}"):
for file_path in files:
file_path = os.path.join(root, file_path)
print(file_path)
if "bass.wav" in file_path:
bass_path = file_path
if "vocals.wav" in file_path:
vocals_path = file_path
if "other.wav" in file_path:
other_path = file_path
if "drums.wav" in file_path:
drums_path = file_path
#return result.bpm, fig, sonif_path, elapsed_time
return result.bpm, fig, elapsed_time, json_structure_output, bass_path, drums_path, other_path, vocals_path
def aggregate_vocal_times(vocal_time):
"""
Aggregates multiple vocal segments into one single segment. This is done because
usually segments are very short (<3 seconds) sections of audio.
"""
# This is an hyperparameter for the aggregation of the segments. This means we aggregate
# until we don't find a segment which has a start_time NEXT_SEGMENT_SECONDS after the end_time
# of the previous segment
NEXT_SEGMENT_SECONDS = 5
try:
start_time = 0.0
end_time = 0.0
begin_seq = True
compressed_vocal_times = []
for vocal_time in vocal_times:
if begin_seq:
start_time = vocal_time['start_time']
end_time = vocal_time['end_time']
begin_seq = False
continue
if float(vocal_time['start_time']) < float(end_time) + NEXT_SEGMENT_SECONDS:
end_time = vocal_time['end_time']
else:
print(start_time, end_time)
compressed_vocal_times.append( {
"start_time": f"{start_time}",
"end_time": f"{end_time}"
}
)
start_time = vocal_time['start_time']
end_time = vocal_time['end_time']
compressed_vocal_times.append( {
"start_time": f"{start_time}",
"end_time": f"{end_time}"
}
)
except Exception as e:
print(f"An exception occurred: {e}")
return compressed_vocal_times
def add_voice_label(json_file, audio_path):
# This is an hyperparameter of the model which determines wheter to consider
# the segment voice of non voice
THRESHOLD_PROBABILITY = 0.75
# Load the JSON file
with open(json_file, 'r') as f:
data = json.load(f)
# Create VAD object
vad_iterator = VADIterator(model)
# Read input audio file
wav, _ = librosa.load(audio_path, sr=SAMPLING_RATE, mono=True)
speech_probs = []
# Size of the window we compute the probability on.
# This is an hyperparameter for the detection and can be changed to obtain different
# result. I found this to be optimal.
window_size_samples = int(SAMPLING_RATE/4)
for i in range(0, len(wav), window_size_samples):
chunk = torch.from_numpy(wav[i: i+ window_size_samples])
if len(chunk) < window_size_samples:
break
speech_prob = model(chunk, SAMPLING_RATE).item()
speech_probs.append(speech_prob)
vad_iterator.reset_states() # reset model states after each audio
voice_idxs = np.where(np.array(speech_probs) >= THRESHOLD_PROBABILITY)[0]
print(len(voice_idxs))
if len(voice_idxs) == 0:
print("NO VOICE SEGMENTS DETECTED!")
try:
begin_seq = True
start_idx = 0
vocal_times=[]
for i in range(len(voice_idxs)-1):
if begin_seq:
start_idx = voice_idxs[i]
begin_seq = False
if voice_idxs[i+1] == voice_idxs[i]+1:
continue
start_time = float((start_idx*window_size_samples)/SAMPLING_RATE)
end_time = float((voice_idxs[i]*window_size_samples)/SAMPLING_RATE)
vocal_times.append( {
"start_time": f"{start_time:.2f}",
"end_time": f"{end_time:.2f}"
}
)
begin_seq = True
vocal_times = aggregate_vocal_times(vocal_times)
data['vocal_times'] = vocal_times
except Exception as e:
print(f"An exception occurred: {e}")
with open(json_file, 'w') as f:
print("writing_to_json...")
json.dump(data, f, indent=4)
with gr.Blocks() as demo:
gr.HTML(HEADER)
input_audio_path = gr.Audio(
label='Input',
type='filepath',
format='mp3',
show_download_button=False,
)
button = gr.Button('Analyze', variant='primary')
output_viz = gr.Plot(label='Visualization')
with gr.Row():
output_bpm = gr.Textbox(label='BPM', scale=1)
#output_sonif = gr.Audio(
# label='Sonification',
# type='filepath',
# format='mp3',
# show_download_button=False,
# scale=9,
#)
elapsed_time = gr.Textbox(label='Overall inference time', scale=1)
json_structure_output = gr.File(label="Json structure")
with gr.Column():
bass = gr.Audio(label='bass', show_share_button=False)
vocals =gr.Audio(label='vocals', show_share_button=False)
other = gr.Audio(label='other', show_share_button=False)
drums =gr.Audio(label='drums', show_share_button=False)
#bass_path = gr.Textbox(label='bass_path', scale=1)
#drums_path = gr.Textbox(label='drums_path', scale=1)
#other_path = gr.Textbox(label='other_path', scale=1)
#vocals_path = gr.Textbox(label='vocals_path', scale=1)
#gr.Examples(
# examples=[
# './assets/NewJeans - Super Shy.mp3',
# './assets/Bruno Mars - 24k Magic.mp3'
# ],
# inputs=input_audio_path,
# outputs=[output_bpm, output_viz, output_sonif],
# fn=analyze,
# cache_examples=CACHE_EXAMPLES,
#)
button.click(
fn=analyze,
inputs=input_audio_path,
#outputs=[output_bpm, output_viz, output_sonif, elapsed_time],
outputs=[output_bpm, output_viz, elapsed_time, json_structure_output, bass, drums, other, vocals],
api_name='analyze',
)
if __name__ == '__main__':
demo.launch()