|
from __future__ import annotations |
|
import os, openai |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chat_models import ChatOpenAI |
|
from typing import Any |
|
from langchain.base_language import BaseLanguageModel |
|
from langchain.chains.llm import LLMChain |
|
import gradio as gr |
|
|
|
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] |
|
prompt_file = "prompt_template.txt" |
|
|
|
|
|
class ProductDescGen(LLMChain): |
|
"""LLM Chain specifically for generating multi paragraph rich text product description using emojis.""" |
|
|
|
@classmethod |
|
def from_llm( |
|
cls, llm: BaseLanguageModel, prompt: str, **kwargs: Any |
|
) -> ProductDescGen: |
|
"""Load ProductDescGen Chain from LLM.""" |
|
return cls(llm=llm, prompt=prompt, **kwargs) |
|
|
|
|
|
def product_desc_generator(product_name, keywords): |
|
with open(prompt_file, "r") as file: |
|
prompt_template = file.read() |
|
|
|
PROMPT = PromptTemplate( |
|
input_variables=["product_name", "keywords"], template=prompt_template |
|
) |
|
llm = ChatOpenAI( |
|
model_name="gpt-3.5-turbo", |
|
temperature=0.7, |
|
openai_api_key=OPENAI_API_KEY, |
|
) |
|
|
|
ProductDescGen_chain = ProductDescGen.from_llm(llm=llm, prompt=PROMPT) |
|
ProductDescGen_query = ProductDescGen_chain.apply_and_parse( |
|
[{"product_name": product_name, "keywords": keywords}] |
|
) |
|
return ProductDescGen_query[0]["text"] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("""<h1>Welcome to Product Description Generator</h1>""") |
|
gr.Markdown( |
|
"Generate Product Description for your products instantly!<br>" |
|
"Provide product name and keywords related to that product. Click on 'Generate Description' button and multi-paragraph rich text product description will be genrated instantly.<br>" |
|
"Note: Generated product description is SEO compliant and can be used to populate product information." |
|
) |
|
|
|
with gr.Tab("Generate Product Description!"): |
|
product_name = gr.Textbox( |
|
label="Product Name", |
|
placeholder="Nike Shoes", |
|
) |
|
keywords = gr.Textbox( |
|
label="Keywords (separated by commas)", |
|
placeholder="black shoes, leather shoes for men, water resistant", |
|
) |
|
product_description = gr.Textbox(label="Product Description") |
|
click_button = gr.Button(value="Generate Description!") |
|
click_button.click( |
|
product_desc_generator, [product_name, keywords], product_description |
|
) |
|
|
|
demo.launch() |
|
|