Spaces:
Sleeping
Sleeping
Update app/main.py
Browse files- app/main.py +67 -67
app/main.py
CHANGED
|
@@ -1,58 +1,70 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" #
|
| 3 |
-
|
| 4 |
from absl import logging as absl_logging
|
| 5 |
absl_logging.set_verbosity(absl_logging.ERROR)
|
| 6 |
|
| 7 |
-
from fastapi import FastAPI, Request, UploadFile, File, Form
|
| 8 |
-
from fastapi.responses import HTMLResponse
|
| 9 |
-
from fastapi.staticfiles import StaticFiles
|
| 10 |
-
from fastapi.templating import Jinja2Templates
|
| 11 |
-
|
| 12 |
import uuid
|
|
|
|
|
|
|
| 13 |
import cv2
|
| 14 |
import numpy as np
|
| 15 |
import mediapipe as mp
|
| 16 |
-
from
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
#
|
| 19 |
BASE_DIR = Path(__file__).resolve().parent
|
| 20 |
TEMPLATES_DIR = BASE_DIR / "templates"
|
| 21 |
STATIC_DIR = BASE_DIR / "static"
|
| 22 |
-
PROCESSED_DIR = STATIC_DIR / "processed"
|
| 23 |
-
PROCESSED_DIR.mkdir(parents=True, exist_ok=True)
|
| 24 |
|
| 25 |
-
#
|
|
|
|
|
|
|
|
|
|
| 26 |
app = FastAPI(title="Face Blur Web")
|
| 27 |
-
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
|
|
|
| 28 |
templates = Jinja2Templates(directory=str(TEMPLATES_DIR))
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
|
|
|
|
| 32 |
MIN_CONF = 0.25
|
| 33 |
IOU_NMS = 0.35
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
MAX_KERNEL = 301 # upper bound kernel (odd)
|
| 42 |
-
MAX_SIDE = 1800 # optional resize for very large uploads (performance)
|
| 43 |
|
| 44 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def odd(n: int) -> int:
|
|
|
|
| 46 |
n = max(3, int(n))
|
| 47 |
return n if n % 2 == 1 else n + 1
|
| 48 |
|
| 49 |
def nms(boxes, scores, iou_thresh=0.35):
|
|
|
|
| 50 |
if not boxes:
|
| 51 |
return []
|
| 52 |
idxs = np.argsort(scores)[::-1]
|
| 53 |
keep = []
|
| 54 |
while len(idxs) > 0:
|
| 55 |
-
i = idxs[0]
|
|
|
|
| 56 |
xx1 = np.maximum(boxes[i][0], np.array([boxes[j][0] for j in idxs[1:]]))
|
| 57 |
yy1 = np.maximum(boxes[i][1], np.array([boxes[j][1] for j in idxs[1:]]))
|
| 58 |
xx2 = np.minimum(boxes[i][0]+boxes[i][2], np.array([boxes[j][0]+boxes[j][2] for j in idxs[1:]]))
|
|
@@ -65,8 +77,15 @@ def nms(boxes, scores, iou_thresh=0.35):
|
|
| 65 |
idxs = idxs[1:][iou <= iou_thresh]
|
| 66 |
return keep
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
def detect_faces_mediapipe(img_bgr: np.ndarray):
|
| 69 |
-
"""Detect faces across multiple scales and both MediaPipe models
|
| 70 |
H, W = img_bgr.shape[:2]
|
| 71 |
mp_fd = mp.solutions.face_detection
|
| 72 |
detectors = [
|
|
@@ -85,7 +104,6 @@ def detect_faces_mediapipe(img_bgr: np.ndarray):
|
|
| 85 |
bb = d.location_data.relative_bounding_box
|
| 86 |
x, y = int(bb.xmin * Uw), int(bb.ymin * Uh)
|
| 87 |
w, h = int(bb.width * Uw), int(bb.height * Uh)
|
| 88 |
-
# map back to original coordinates
|
| 89 |
x, y, w, h = int(x/s), int(y/s), int(w/s), int(h/s)
|
| 90 |
x = max(0, x); y = max(0, y)
|
| 91 |
w = max(1, min(w, W - x)); h = max(1, min(h, H - y))
|
|
@@ -94,46 +112,39 @@ def detect_faces_mediapipe(img_bgr: np.ndarray):
|
|
| 94 |
keep = nms(boxes, scores, iou_thresh=IOU_NMS)
|
| 95 |
return [boxes[i] for i in keep]
|
| 96 |
|
| 97 |
-
def gentle_contrast_boost(img_bgr: np.ndarray) -> np.ndarray:
|
| 98 |
-
lab = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2LAB)
|
| 99 |
-
l, a, b = cv2.split(lab)
|
| 100 |
-
l = cv2.createCLAHE(2.0, (8, 8)).apply(l)
|
| 101 |
-
return cv2.cvtColor(cv2.merge([l, a, b]), cv2.COLOR_LAB2BGR)
|
| 102 |
-
|
| 103 |
def draw_unblurred_preview(img_bgr: np.ndarray, boxes):
|
| 104 |
-
|
|
|
|
| 105 |
for (x, y, w, h) in boxes:
|
| 106 |
center = (x + w // 2, y + h // 2)
|
| 107 |
axes = (int((w/2) * OVAL_SCALE_X), int((h/2) * OVAL_SCALE_Y))
|
| 108 |
-
cv2.ellipse(
|
| 109 |
-
return
|
| 110 |
|
| 111 |
def blur_faces_oval(img_bgr: np.ndarray, boxes):
|
|
|
|
| 112 |
H, W = img_bgr.shape[:2]
|
| 113 |
out = img_bgr.copy()
|
| 114 |
for (x, y, w, h) in boxes:
|
| 115 |
-
# ellipse parameters
|
| 116 |
cx, cy = x + w // 2, y + h // 2
|
| 117 |
ax = int((w / 2) * OVAL_SCALE_X)
|
| 118 |
ay = int((h / 2) * OVAL_SCALE_Y)
|
| 119 |
|
| 120 |
-
# rectangular ROI around ellipse
|
| 121 |
x0 = max(0, cx - ax); y0 = max(0, cy - ay)
|
| 122 |
x1 = min(W, cx + ax); y1 = min(H, cy + ay)
|
| 123 |
roi = out[y0:y1, x0:x1]
|
| 124 |
rh, rw = roi.shape[:2]
|
| 125 |
|
| 126 |
-
# kernel proportional to face size (clamped)
|
| 127 |
k_base = int(KERNEL_FRAC * max(w, h))
|
|
|
|
| 128 |
k = odd(max(MIN_KERNEL, min(MAX_KERNEL, k_base, rh - (rh % 2 == 0), rw - (rw % 2 == 0))))
|
| 129 |
if k < 9:
|
| 130 |
-
#
|
| 131 |
small = cv2.resize(roi, (max(1, rw // 10), max(1, rh // 10)), interpolation=cv2.INTER_LINEAR)
|
| 132 |
roi_blur = cv2.resize(small, (rw, rh), interpolation=cv2.INTER_NEAREST)
|
| 133 |
else:
|
| 134 |
roi_blur = cv2.GaussianBlur(roi, (k, k), 0)
|
| 135 |
|
| 136 |
-
# oval mask + feather
|
| 137 |
mask = np.zeros((rh, rw), dtype=np.uint8)
|
| 138 |
cv2.ellipse(mask, (rw // 2, rh // 2), (ax, ay), 0, 0, 360, 255, -1)
|
| 139 |
feather = odd(int(max(w, h) * FEATHER_FRAC))
|
|
@@ -145,68 +156,57 @@ def blur_faces_oval(img_bgr: np.ndarray, boxes):
|
|
| 145 |
out[y0:y1, x0:x1] = roi_out
|
| 146 |
return out
|
| 147 |
|
| 148 |
-
#
|
| 149 |
@app.get("/", response_class=HTMLResponse)
|
| 150 |
async def index(request: Request):
|
| 151 |
-
return templates.TemplateResponse("index.html", {"request": request, "result": None})
|
| 152 |
|
| 153 |
@app.post("/upload", response_class=HTMLResponse)
|
| 154 |
-
async def upload_image(
|
| 155 |
-
|
| 156 |
-
file: UploadFile = File(...),
|
| 157 |
-
):
|
| 158 |
-
# Validate extension
|
| 159 |
-
name = file.filename or "upload"
|
| 160 |
if not name.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".webp")):
|
| 161 |
return templates.TemplateResponse("index.html", {
|
| 162 |
-
"request": request,
|
| 163 |
-
"error": "Unsupported file type. Please upload JPG/PNG/BMP/WEBP.",
|
| 164 |
-
"result": None
|
| 165 |
})
|
| 166 |
|
| 167 |
-
# Read file into OpenCV image
|
| 168 |
data = await file.read()
|
| 169 |
npbuf = np.frombuffer(data, np.uint8)
|
| 170 |
img = cv2.imdecode(npbuf, cv2.IMREAD_COLOR)
|
| 171 |
if img is None:
|
| 172 |
return templates.TemplateResponse("index.html", {
|
| 173 |
-
"request": request,
|
| 174 |
-
"error": "Could not decode image. Try another file.",
|
| 175 |
-
"result": None
|
| 176 |
})
|
| 177 |
|
| 178 |
-
# Optional
|
| 179 |
H, W = img.shape[:2]
|
| 180 |
scale = min(1.0, float(MAX_SIDE) / max(H, W))
|
| 181 |
if scale < 1.0:
|
| 182 |
img = cv2.resize(img, (int(W * scale), int(H * scale)), interpolation=cv2.INTER_AREA)
|
| 183 |
|
| 184 |
-
#
|
| 185 |
img_proc = gentle_contrast_boost(img)
|
| 186 |
-
|
| 187 |
-
# Detect faces
|
| 188 |
boxes = detect_faces_mediapipe(img_proc)
|
| 189 |
faces_count = len(boxes)
|
| 190 |
|
| 191 |
-
# Generate outputs
|
| 192 |
preview = draw_unblurred_preview(img_proc, boxes)
|
| 193 |
blurred = blur_faces_oval(img_proc, boxes)
|
| 194 |
|
| 195 |
-
# Save
|
| 196 |
uid = uuid.uuid4().hex
|
| 197 |
-
|
| 198 |
-
|
| 199 |
|
| 200 |
-
cv2.imwrite(str(
|
| 201 |
-
cv2.imwrite(str(
|
| 202 |
|
| 203 |
return templates.TemplateResponse("index.html", {
|
| 204 |
"request": request,
|
| 205 |
"error": None,
|
| 206 |
"result": {
|
| 207 |
"faces": faces_count,
|
| 208 |
-
"annot_url": f"/{
|
| 209 |
-
"blur_url": f"/{
|
| 210 |
"filename": name
|
| 211 |
}
|
| 212 |
})
|
|
|
|
|
|
| 1 |
+
# app/main.py
|
| 2 |
import os
|
| 3 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # quiet TF/MediaPipe logs
|
|
|
|
| 4 |
from absl import logging as absl_logging
|
| 5 |
absl_logging.set_verbosity(absl_logging.ERROR)
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import uuid
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
import cv2
|
| 11 |
import numpy as np
|
| 12 |
import mediapipe as mp
|
| 13 |
+
from fastapi import FastAPI, Request, UploadFile, File
|
| 14 |
+
from fastapi.responses import HTMLResponse
|
| 15 |
+
from fastapi.staticfiles import StaticFiles
|
| 16 |
+
from fastapi.templating import Jinja2Templates
|
| 17 |
|
| 18 |
+
# ---------------- Paths & FastAPI ----------------
|
| 19 |
BASE_DIR = Path(__file__).resolve().parent
|
| 20 |
TEMPLATES_DIR = BASE_DIR / "templates"
|
| 21 |
STATIC_DIR = BASE_DIR / "static"
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Writable location on Hugging Face Spaces
|
| 24 |
+
RESULTS_DIR = Path("/tmp/faceblur")
|
| 25 |
+
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
|
| 26 |
+
|
| 27 |
app = FastAPI(title="Face Blur Web")
|
| 28 |
+
app.mount("/static", StaticFiles(directory=str(STATIC_DIR)), name="static")
|
| 29 |
+
app.mount("/results", StaticFiles(directory=str(RESULTS_DIR)), name="results")
|
| 30 |
templates = Jinja2Templates(directory=str(TEMPLATES_DIR))
|
| 31 |
|
| 32 |
+
# --------------- Detection/Blur settings ----------------
|
| 33 |
+
# Multi-scale + both MediaPipe models helps with small/far faces
|
| 34 |
+
SCALES = [1.0, 1.5, 2.0, 2.5, 3.0]
|
| 35 |
MIN_CONF = 0.25
|
| 36 |
IOU_NMS = 0.35
|
| 37 |
|
| 38 |
+
# Oval size around each detected face (relative to bbox)
|
| 39 |
+
OVAL_SCALE_X = 1.35
|
| 40 |
+
OVAL_SCALE_Y = 1.55
|
| 41 |
|
| 42 |
+
# Edge feathering (as fraction of face size)
|
| 43 |
+
FEATHER_FRAC = 0.12
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Blur strength scales with face size
|
| 46 |
+
KERNEL_FRAC = 0.9
|
| 47 |
+
MIN_KERNEL = 55
|
| 48 |
+
MAX_KERNEL = 301
|
| 49 |
+
|
| 50 |
+
# Downscale very large uploads for speed
|
| 51 |
+
MAX_SIDE = 1800
|
| 52 |
+
|
| 53 |
+
# ----------------- Utils -----------------
|
| 54 |
def odd(n: int) -> int:
|
| 55 |
+
"""Ensure odd kernel size >= 3."""
|
| 56 |
n = max(3, int(n))
|
| 57 |
return n if n % 2 == 1 else n + 1
|
| 58 |
|
| 59 |
def nms(boxes, scores, iou_thresh=0.35):
|
| 60 |
+
"""Non-max suppression for [x,y,w,h] boxes."""
|
| 61 |
if not boxes:
|
| 62 |
return []
|
| 63 |
idxs = np.argsort(scores)[::-1]
|
| 64 |
keep = []
|
| 65 |
while len(idxs) > 0:
|
| 66 |
+
i = idxs[0]
|
| 67 |
+
keep.append(i)
|
| 68 |
xx1 = np.maximum(boxes[i][0], np.array([boxes[j][0] for j in idxs[1:]]))
|
| 69 |
yy1 = np.maximum(boxes[i][1], np.array([boxes[j][1] for j in idxs[1:]]))
|
| 70 |
xx2 = np.minimum(boxes[i][0]+boxes[i][2], np.array([boxes[j][0]+boxes[j][2] for j in idxs[1:]]))
|
|
|
|
| 77 |
idxs = idxs[1:][iou <= iou_thresh]
|
| 78 |
return keep
|
| 79 |
|
| 80 |
+
def gentle_contrast_boost(img_bgr: np.ndarray) -> np.ndarray:
|
| 81 |
+
"""CLAHE on L channel of LAB for small contrast lift (helps detection)."""
|
| 82 |
+
lab = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2LAB)
|
| 83 |
+
l, a, b = cv2.split(lab)
|
| 84 |
+
l = cv2.createCLAHE(2.0, (8, 8)).apply(l)
|
| 85 |
+
return cv2.cvtColor(cv2.merge([l, a, b]), cv2.COLOR_LAB2BGR)
|
| 86 |
+
|
| 87 |
def detect_faces_mediapipe(img_bgr: np.ndarray):
|
| 88 |
+
"""Detect faces across multiple scales and both MediaPipe models."""
|
| 89 |
H, W = img_bgr.shape[:2]
|
| 90 |
mp_fd = mp.solutions.face_detection
|
| 91 |
detectors = [
|
|
|
|
| 104 |
bb = d.location_data.relative_bounding_box
|
| 105 |
x, y = int(bb.xmin * Uw), int(bb.ymin * Uh)
|
| 106 |
w, h = int(bb.width * Uw), int(bb.height * Uh)
|
|
|
|
| 107 |
x, y, w, h = int(x/s), int(y/s), int(w/s), int(h/s)
|
| 108 |
x = max(0, x); y = max(0, y)
|
| 109 |
w = max(1, min(w, W - x)); h = max(1, min(h, H - y))
|
|
|
|
| 112 |
keep = nms(boxes, scores, iou_thresh=IOU_NMS)
|
| 113 |
return [boxes[i] for i in keep]
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
def draw_unblurred_preview(img_bgr: np.ndarray, boxes):
|
| 116 |
+
"""Draw green ovals (no blur)."""
|
| 117 |
+
out = img_bgr.copy()
|
| 118 |
for (x, y, w, h) in boxes:
|
| 119 |
center = (x + w // 2, y + h // 2)
|
| 120 |
axes = (int((w/2) * OVAL_SCALE_X), int((h/2) * OVAL_SCALE_Y))
|
| 121 |
+
cv2.ellipse(out, center, axes, 0, 0, 360, (0, 255, 0), 3)
|
| 122 |
+
return out
|
| 123 |
|
| 124 |
def blur_faces_oval(img_bgr: np.ndarray, boxes):
|
| 125 |
+
"""Strong oval blur with feathered edges; kernel scales per face size."""
|
| 126 |
H, W = img_bgr.shape[:2]
|
| 127 |
out = img_bgr.copy()
|
| 128 |
for (x, y, w, h) in boxes:
|
|
|
|
| 129 |
cx, cy = x + w // 2, y + h // 2
|
| 130 |
ax = int((w / 2) * OVAL_SCALE_X)
|
| 131 |
ay = int((h / 2) * OVAL_SCALE_Y)
|
| 132 |
|
|
|
|
| 133 |
x0 = max(0, cx - ax); y0 = max(0, cy - ay)
|
| 134 |
x1 = min(W, cx + ax); y1 = min(H, cy + ay)
|
| 135 |
roi = out[y0:y1, x0:x1]
|
| 136 |
rh, rw = roi.shape[:2]
|
| 137 |
|
|
|
|
| 138 |
k_base = int(KERNEL_FRAC * max(w, h))
|
| 139 |
+
# clamp to ROI and ensure odd
|
| 140 |
k = odd(max(MIN_KERNEL, min(MAX_KERNEL, k_base, rh - (rh % 2 == 0), rw - (rw % 2 == 0))))
|
| 141 |
if k < 9:
|
| 142 |
+
# fallback to pixelation if ROI too small
|
| 143 |
small = cv2.resize(roi, (max(1, rw // 10), max(1, rh // 10)), interpolation=cv2.INTER_LINEAR)
|
| 144 |
roi_blur = cv2.resize(small, (rw, rh), interpolation=cv2.INTER_NEAREST)
|
| 145 |
else:
|
| 146 |
roi_blur = cv2.GaussianBlur(roi, (k, k), 0)
|
| 147 |
|
|
|
|
| 148 |
mask = np.zeros((rh, rw), dtype=np.uint8)
|
| 149 |
cv2.ellipse(mask, (rw // 2, rh // 2), (ax, ay), 0, 0, 360, 255, -1)
|
| 150 |
feather = odd(int(max(w, h) * FEATHER_FRAC))
|
|
|
|
| 156 |
out[y0:y1, x0:x1] = roi_out
|
| 157 |
return out
|
| 158 |
|
| 159 |
+
# ----------------- Routes -----------------
|
| 160 |
@app.get("/", response_class=HTMLResponse)
|
| 161 |
async def index(request: Request):
|
| 162 |
+
return templates.TemplateResponse("index.html", {"request": request, "result": None, "error": None})
|
| 163 |
|
| 164 |
@app.post("/upload", response_class=HTMLResponse)
|
| 165 |
+
async def upload_image(request: Request, file: UploadFile = File(...)):
|
| 166 |
+
name = (file.filename or "upload").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
if not name.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".webp")):
|
| 168 |
return templates.TemplateResponse("index.html", {
|
| 169 |
+
"request": request, "error": "Unsupported file type. Use JPG/PNG/BMP/WEBP.", "result": None
|
|
|
|
|
|
|
| 170 |
})
|
| 171 |
|
|
|
|
| 172 |
data = await file.read()
|
| 173 |
npbuf = np.frombuffer(data, np.uint8)
|
| 174 |
img = cv2.imdecode(npbuf, cv2.IMREAD_COLOR)
|
| 175 |
if img is None:
|
| 176 |
return templates.TemplateResponse("index.html", {
|
| 177 |
+
"request": request, "error": "Could not decode image.", "result": None
|
|
|
|
|
|
|
| 178 |
})
|
| 179 |
|
| 180 |
+
# Optional downscale for very large images
|
| 181 |
H, W = img.shape[:2]
|
| 182 |
scale = min(1.0, float(MAX_SIDE) / max(H, W))
|
| 183 |
if scale < 1.0:
|
| 184 |
img = cv2.resize(img, (int(W * scale), int(H * scale)), interpolation=cv2.INTER_AREA)
|
| 185 |
|
| 186 |
+
# Detection pipeline
|
| 187 |
img_proc = gentle_contrast_boost(img)
|
|
|
|
|
|
|
| 188 |
boxes = detect_faces_mediapipe(img_proc)
|
| 189 |
faces_count = len(boxes)
|
| 190 |
|
|
|
|
| 191 |
preview = draw_unblurred_preview(img_proc, boxes)
|
| 192 |
blurred = blur_faces_oval(img_proc, boxes)
|
| 193 |
|
| 194 |
+
# Save to /tmp and serve via /results
|
| 195 |
uid = uuid.uuid4().hex
|
| 196 |
+
annot_name = f"{uid}_annot.jpg"
|
| 197 |
+
blur_name = f"{uid}_blur.jpg"
|
| 198 |
|
| 199 |
+
cv2.imwrite(str(RESULTS_DIR / annot_name), preview)
|
| 200 |
+
cv2.imwrite(str(RESULTS_DIR / blur_name), blurred)
|
| 201 |
|
| 202 |
return templates.TemplateResponse("index.html", {
|
| 203 |
"request": request,
|
| 204 |
"error": None,
|
| 205 |
"result": {
|
| 206 |
"faces": faces_count,
|
| 207 |
+
"annot_url": f"/results/{annot_name}",
|
| 208 |
+
"blur_url": f"/results/{blur_name}",
|
| 209 |
"filename": name
|
| 210 |
}
|
| 211 |
})
|
| 212 |
+
|