|
import pprint |
|
import subprocess |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
from optimum.intel.openvino import OVModelForSeq2SeqLM |
|
from transformers import AutoTokenizer, TextIteratorStreamer |
|
|
|
result = subprocess.run(["lscpu"], text=True, capture_output=True) |
|
pprint.pprint(result.stdout) |
|
|
|
|
|
original_model_id = "declare-lab/flan-alpaca-large" |
|
model_id = f"helenai/{original_model_id.replace('/','-')}-ov" |
|
|
|
model = OVModelForSeq2SeqLM.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens): |
|
|
|
model_inputs = tokenizer([user_text], return_tensors="pt") |
|
|
|
|
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True |
|
) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=float(temperature), |
|
top_k=top_k, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
model_output = "" |
|
for new_text in streamer: |
|
model_output += new_text |
|
yield model_output |
|
return model_output |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value="") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
original_link = "https://huggingface.co/spaces/joaogante/transformers_streaming" |
|
gr.Markdown( |
|
"# OpenVINO and 🤗 Transformers 🔥Streaming🔥 on Gradio\n" |
|
"This demo showcases the use of the " |
|
"[streaming feature](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming) " |
|
"of 🤗 Transformers with OpenVINO models and Gradio to generate text in real-time. It uses " |
|
f"[{original_model_id}](https://huggingface.co/{original_model_id}), " |
|
"converted to OpenVINO.\n\n" |
|
f"This space was duplicated from {original_link} and modified for OpenVINO models." |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
user_text = gr.Textbox( |
|
placeholder="Write an email about an alpaca that likes flan", |
|
label="User input", |
|
) |
|
model_output = gr.Textbox(label="Model output", lines=10, interactive=False) |
|
button_submit = gr.Button(value="Submit") |
|
|
|
with gr.Column(scale=1): |
|
max_new_tokens = gr.Slider( |
|
minimum=1, |
|
maximum=1000, |
|
value=250, |
|
step=1, |
|
interactive=True, |
|
label="Max New Tokens", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.05, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
interactive=True, |
|
label="Top-p (nucleus sampling)", |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
value=50, |
|
step=1, |
|
interactive=True, |
|
label="Top-k", |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.1, |
|
maximum=5.0, |
|
value=0.8, |
|
step=0.1, |
|
interactive=True, |
|
label="Temperature", |
|
) |
|
|
|
user_text.submit( |
|
run_generation, |
|
[user_text, top_p, temperature, top_k, max_new_tokens], |
|
model_output, |
|
) |
|
button_submit.click( |
|
run_generation, |
|
[user_text, top_p, temperature, top_k, max_new_tokens], |
|
model_output, |
|
) |
|
|
|
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0") |
|
|