Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import tensorflow as tf | |
| from PIL import Image | |
| import numpy as np | |
| # Lade dein Modell | |
| model_path = "pokemon-model.keras" | |
| model = tf.keras.models.load_model(model_path) | |
| model.summary() # Check if the model architecture loaded matches the expected one | |
| # Klassen Labels für deine vier Pokémon | |
| labels = ['Squirtle', 'Pikachu', 'Charizard', 'Butterfree'] | |
| def predict_pokemon(image): | |
| # Bildvorverarbeitung | |
| image = Image.fromarray(image.astype('uint8'), 'RGB') | |
| image = image.resize((150, 150)) # Anpassen der Bildgröße an das Modell | |
| image = np.array(image) # Normalisieren der Pixelwerte | |
| print(image.shape) | |
| # Bild in das Modell einspeisen und Vorhersage treffen | |
| prediction = model.predict(image[None, ...]) | |
| confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} | |
| return confidences | |
| # Gradio Interface definieren | |
| input_image = gr.Image() | |
| output_text = gr.Textbox(label="Predicted Pokemon") | |
| iface = gr.Interface( | |
| fn=predict_pokemon, | |
| inputs=input_image, | |
| outputs=gr.Label(), | |
| title="Pokémon Classifier", | |
| description="Upload an image of a Pokémon and see the model classify it!" | |
| ) | |
| # Starte die Gradio-Schnittstelle | |
| iface.launch() | |