Spaces:
Configuration error
Configuration error
| import os | |
| import re | |
| import shutil | |
| import numpy as np | |
| import cv2 | |
| import imageio | |
| from matplotlib import cm | |
| from matplotlib.colors import LinearSegmentedColormap | |
| import json | |
| import torch | |
| from utils.obj import write_obj | |
| class SaverMixin: | |
| def save_dir(self): | |
| return self.config.save_dir | |
| def convert_data(self, data): | |
| if isinstance(data, np.ndarray): | |
| return data | |
| elif isinstance(data, torch.Tensor): | |
| return data.cpu().numpy() | |
| elif isinstance(data, list): | |
| return [self.convert_data(d) for d in data] | |
| elif isinstance(data, dict): | |
| return {k: self.convert_data(v) for k, v in data.items()} | |
| else: | |
| raise TypeError( | |
| "Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting", | |
| type(data), | |
| ) | |
| def get_save_path(self, filename): | |
| save_path = os.path.join(self.save_dir, filename) | |
| os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
| return save_path | |
| DEFAULT_RGB_KWARGS = {"data_format": "CHW", "data_range": (0, 1)} | |
| DEFAULT_UV_KWARGS = { | |
| "data_format": "CHW", | |
| "data_range": (0, 1), | |
| "cmap": "checkerboard", | |
| } | |
| DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"} | |
| def get_rgb_image_(self, img, data_format, data_range): | |
| img = self.convert_data(img) | |
| assert data_format in ["CHW", "HWC"] | |
| if data_format == "CHW": | |
| img = img.transpose(1, 2, 0) | |
| img = img.clip(min=data_range[0], max=data_range[1]) | |
| img = ((img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0).astype( | |
| np.uint8 | |
| ) | |
| imgs = [img[..., start : start + 3] for start in range(0, img.shape[-1], 3)] | |
| imgs = [ | |
| ( | |
| img_ | |
| if img_.shape[-1] == 3 | |
| else np.concatenate( | |
| [ | |
| img_, | |
| np.zeros( | |
| (img_.shape[0], img_.shape[1], 3 - img_.shape[2]), | |
| dtype=img_.dtype, | |
| ), | |
| ], | |
| axis=-1, | |
| ) | |
| ) | |
| for img_ in imgs | |
| ] | |
| img = np.concatenate(imgs, axis=1) | |
| img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
| return img | |
| def save_rgb_image( | |
| self, | |
| filename, | |
| img, | |
| data_format=DEFAULT_RGB_KWARGS["data_format"], | |
| data_range=DEFAULT_RGB_KWARGS["data_range"], | |
| ): | |
| img = self.get_rgb_image_(img, data_format, data_range) | |
| cv2.imwrite(self.get_save_path(filename), img) | |
| def get_uv_image_(self, img, data_format, data_range, cmap): | |
| img = self.convert_data(img) | |
| assert data_format in ["CHW", "HWC"] | |
| if data_format == "CHW": | |
| img = img.transpose(1, 2, 0) | |
| img = img.clip(min=data_range[0], max=data_range[1]) | |
| img = (img - data_range[0]) / (data_range[1] - data_range[0]) | |
| assert cmap in ["checkerboard", "color"] | |
| if cmap == "checkerboard": | |
| n_grid = 64 | |
| mask = (img * n_grid).astype(int) | |
| mask = (mask[..., 0] + mask[..., 1]) % 2 == 0 | |
| img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255 | |
| img[mask] = np.array([255, 0, 255], dtype=np.uint8) | |
| img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
| elif cmap == "color": | |
| img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) | |
| img_[..., 0] = (img[..., 0] * 255).astype(np.uint8) | |
| img_[..., 1] = (img[..., 1] * 255).astype(np.uint8) | |
| img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR) | |
| img = img_ | |
| return img | |
| def save_uv_image( | |
| self, | |
| filename, | |
| img, | |
| data_format=DEFAULT_UV_KWARGS["data_format"], | |
| data_range=DEFAULT_UV_KWARGS["data_range"], | |
| cmap=DEFAULT_UV_KWARGS["cmap"], | |
| ): | |
| img = self.get_uv_image_(img, data_format, data_range, cmap) | |
| cv2.imwrite(self.get_save_path(filename), img) | |
| def get_grayscale_image_(self, img, data_range, cmap): | |
| img = self.convert_data(img) | |
| img = np.nan_to_num(img) | |
| if data_range is None: | |
| img = (img - img.min()) / (img.max() - img.min()) | |
| else: | |
| img = img.clip(data_range[0], data_range[1]) | |
| img = (img - data_range[0]) / (data_range[1] - data_range[0]) | |
| assert cmap in [None, "jet", "magma"] | |
| if cmap == None: | |
| img = (img * 255.0).astype(np.uint8) | |
| img = np.repeat(img[..., None], 3, axis=2) | |
| elif cmap == "jet": | |
| img = (img * 255.0).astype(np.uint8) | |
| img = cv2.applyColorMap(img, cv2.COLORMAP_JET) | |
| elif cmap == "magma": | |
| img = 1.0 - img | |
| base = cm.get_cmap("magma") | |
| num_bins = 256 | |
| colormap = LinearSegmentedColormap.from_list( | |
| f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins | |
| )(np.linspace(0, 1, num_bins))[:, :3] | |
| a = np.floor(img * 255.0) | |
| b = (a + 1).clip(max=255.0) | |
| f = img * 255.0 - a | |
| a = a.astype(np.uint16).clip(0, 255) | |
| b = b.astype(np.uint16).clip(0, 255) | |
| img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None] | |
| img = (img * 255.0).astype(np.uint8) | |
| return img | |
| def save_grayscale_image( | |
| self, | |
| filename, | |
| img, | |
| data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"], | |
| cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"], | |
| ): | |
| img = self.get_grayscale_image_(img, data_range, cmap) | |
| cv2.imwrite(self.get_save_path(filename), img) | |
| def get_image_grid_(self, imgs): | |
| if isinstance(imgs[0], list): | |
| return np.concatenate([self.get_image_grid_(row) for row in imgs], axis=0) | |
| cols = [] | |
| for col in imgs: | |
| assert col["type"] in ["rgb", "uv", "grayscale"] | |
| if col["type"] == "rgb": | |
| rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy() | |
| rgb_kwargs.update(col["kwargs"]) | |
| cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs)) | |
| elif col["type"] == "uv": | |
| uv_kwargs = self.DEFAULT_UV_KWARGS.copy() | |
| uv_kwargs.update(col["kwargs"]) | |
| cols.append(self.get_uv_image_(col["img"], **uv_kwargs)) | |
| elif col["type"] == "grayscale": | |
| grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy() | |
| grayscale_kwargs.update(col["kwargs"]) | |
| cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs)) | |
| return np.concatenate(cols, axis=1) | |
| def save_image_grid(self, filename, imgs): | |
| img = self.get_image_grid_(imgs) | |
| cv2.imwrite(self.get_save_path(filename), img) | |
| def save_image(self, filename, img): | |
| img = self.convert_data(img) | |
| assert img.dtype == np.uint8 | |
| if img.shape[-1] == 3: | |
| img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
| elif img.shape[-1] == 4: | |
| img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) | |
| cv2.imwrite(self.get_save_path(filename), img) | |
| def save_cubemap(self, filename, img, data_range=(0, 1)): | |
| img = self.convert_data(img) | |
| assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2] | |
| imgs_full = [] | |
| for start in range(0, img.shape[-1], 3): | |
| img_ = img[..., start : start + 3] | |
| img_ = np.stack( | |
| [ | |
| self.get_rgb_image_(img_[i], "HWC", data_range) | |
| for i in range(img_.shape[0]) | |
| ], | |
| axis=0, | |
| ) | |
| size = img_.shape[1] | |
| placeholder = np.zeros((size, size, 3), dtype=np.float32) | |
| img_full = np.concatenate( | |
| [ | |
| np.concatenate( | |
| [placeholder, img_[2], placeholder, placeholder], axis=1 | |
| ), | |
| np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1), | |
| np.concatenate( | |
| [placeholder, img_[3], placeholder, placeholder], axis=1 | |
| ), | |
| ], | |
| axis=0, | |
| ) | |
| img_full = cv2.cvtColor(img_full, cv2.COLOR_RGB2BGR) | |
| imgs_full.append(img_full) | |
| imgs_full = np.concatenate(imgs_full, axis=1) | |
| cv2.imwrite(self.get_save_path(filename), imgs_full) | |
| def save_data(self, filename, data): | |
| data = self.convert_data(data) | |
| if isinstance(data, dict): | |
| if not filename.endswith(".npz"): | |
| filename += ".npz" | |
| np.savez(self.get_save_path(filename), **data) | |
| else: | |
| if not filename.endswith(".npy"): | |
| filename += ".npy" | |
| np.save(self.get_save_path(filename), data) | |
| def save_state_dict(self, filename, data): | |
| torch.save(data, self.get_save_path(filename)) | |
| def save_img_sequence(self, filename, img_dir, matcher, save_format="gif", fps=30): | |
| assert save_format in ["gif", "mp4"] | |
| if not filename.endswith(save_format): | |
| filename += f".{save_format}" | |
| matcher = re.compile(matcher) | |
| img_dir = os.path.join(self.save_dir, img_dir) | |
| imgs = [] | |
| for f in os.listdir(img_dir): | |
| if matcher.search(f): | |
| imgs.append(f) | |
| imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0])) | |
| imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs] | |
| if save_format == "gif": | |
| imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] | |
| imageio.mimsave( | |
| self.get_save_path(filename), imgs, fps=fps, palettesize=256 | |
| ) | |
| elif save_format == "mp4": | |
| imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] | |
| imageio.mimsave(self.get_save_path(filename), imgs, fps=fps) | |
| def save_mesh( | |
| self, | |
| filename, | |
| v_pos, | |
| t_pos_idx, | |
| v_tex=None, | |
| t_tex_idx=None, | |
| v_rgb=None, | |
| ortho_scale=1, | |
| ): | |
| v_pos, t_pos_idx = self.convert_data(v_pos), self.convert_data(t_pos_idx) | |
| if v_rgb is not None: | |
| v_rgb = self.convert_data(v_rgb) | |
| if ortho_scale is not None: | |
| print("ortho scale is: ", ortho_scale) | |
| v_pos = v_pos * ortho_scale * 0.5 | |
| # change to front-facing | |
| v_pos_copy = np.zeros_like(v_pos) | |
| # v_pos_copy[:, 0] = v_pos[:, 0] | |
| # v_pos_copy[:, 1] = v_pos[:, 2] | |
| # v_pos_copy[:, 2] = v_pos[:, 1] | |
| v_pos_copy[:, 0] = v_pos[:, 0] | |
| v_pos_copy[:, 1] = v_pos[:, 1] | |
| v_pos_copy[:, 2] = v_pos[:, 2] | |
| import trimesh | |
| mesh = trimesh.Trimesh( | |
| vertices=v_pos_copy, faces=t_pos_idx, vertex_colors=v_rgb | |
| ) | |
| trimesh.repair.fix_inversion(mesh) | |
| mesh.export(self.get_save_path(filename)) | |
| # mesh.export(self.get_save_path(filename.replace(".obj", "-meshlab.obj"))) | |
| # v_pos_copy[:, 0] = v_pos[:, 1] * -1 | |
| # v_pos_copy[:, 1] = v_pos[:, 0] | |
| # v_pos_copy[:, 2] = v_pos[:, 2] | |
| # mesh = trimesh.Trimesh( | |
| # vertices=v_pos_copy, | |
| # faces=t_pos_idx, | |
| # vertex_colors=v_rgb | |
| # ) | |
| # mesh.export(self.get_save_path(filename.replace(".obj", "-blender.obj"))) | |
| # v_pos_copy[:, 0] = v_pos[:, 0] | |
| # v_pos_copy[:, 1] = v_pos[:, 1] * -1 | |
| # v_pos_copy[:, 2] = v_pos[:, 2] * -1 | |
| # mesh = trimesh.Trimesh( | |
| # vertices=v_pos_copy, | |
| # faces=t_pos_idx, | |
| # vertex_colors=v_rgb | |
| # ) | |
| # mesh.export(self.get_save_path(filename.replace(".obj", "-opengl.obj"))) | |
| def save_file(self, filename, src_path): | |
| shutil.copyfile(src_path, self.get_save_path(filename)) | |
| def save_json(self, filename, payload): | |
| with open(self.get_save_path(filename), "w") as f: | |
| f.write(json.dumps(payload)) | |