Spaces:
Runtime error
Runtime error
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import tinycudann as tcnn | |
from pytorch_lightning.utilities.rank_zero import rank_zero_debug, rank_zero_info | |
from utils.misc import config_to_primitive, get_rank | |
from models.utils import get_activation | |
from systems.utils import update_module_step | |
class VanillaFrequency(nn.Module): | |
def __init__(self, in_channels, config): | |
super().__init__() | |
self.N_freqs = config['n_frequencies'] | |
self.in_channels, self.n_input_dims = in_channels, in_channels | |
self.funcs = [torch.sin, torch.cos] | |
self.freq_bands = 2**torch.linspace(0, self.N_freqs-1, self.N_freqs) | |
self.n_output_dims = self.in_channels * (len(self.funcs) * self.N_freqs) | |
self.n_masking_step = config.get('n_masking_step', 0) | |
self.update_step(None, None) # mask should be updated at the beginning each step | |
def forward(self, x): | |
out = [] | |
for freq, mask in zip(self.freq_bands, self.mask): | |
for func in self.funcs: | |
out += [func(freq*x) * mask] | |
return torch.cat(out, -1) | |
def update_step(self, epoch, global_step): | |
if self.n_masking_step <= 0 or global_step is None: | |
self.mask = torch.ones(self.N_freqs, dtype=torch.float32) | |
else: | |
self.mask = (1. - torch.cos(math.pi * (global_step / self.n_masking_step * self.N_freqs - torch.arange(0, self.N_freqs)).clamp(0, 1))) / 2. | |
rank_zero_debug(f'Update mask: {global_step}/{self.n_masking_step} {self.mask}') | |
class ProgressiveBandHashGrid(nn.Module): | |
def __init__(self, in_channels, config): | |
super().__init__() | |
self.n_input_dims = in_channels | |
encoding_config = config.copy() | |
encoding_config['otype'] = 'HashGrid' | |
with torch.cuda.device(get_rank()): | |
self.encoding = tcnn.Encoding(in_channels, encoding_config) | |
self.n_output_dims = self.encoding.n_output_dims | |
self.n_level = config['n_levels'] | |
self.n_features_per_level = config['n_features_per_level'] | |
self.start_level, self.start_step, self.update_steps = config['start_level'], config['start_step'], config['update_steps'] | |
self.current_level = self.start_level | |
self.mask = torch.zeros(self.n_level * self.n_features_per_level, dtype=torch.float32, device=get_rank()) | |
def forward(self, x): | |
enc = self.encoding(x) | |
enc = enc * self.mask | |
return enc | |
def update_step(self, epoch, global_step): | |
current_level = min(self.start_level + max(global_step - self.start_step, 0) // self.update_steps, self.n_level) | |
if current_level > self.current_level: | |
rank_zero_info(f'Update grid level to {current_level}') | |
self.current_level = current_level | |
self.mask[:self.current_level * self.n_features_per_level] = 1. | |
class CompositeEncoding(nn.Module): | |
def __init__(self, encoding, include_xyz=False, xyz_scale=1., xyz_offset=0.): | |
super(CompositeEncoding, self).__init__() | |
self.encoding = encoding | |
self.include_xyz, self.xyz_scale, self.xyz_offset = include_xyz, xyz_scale, xyz_offset | |
self.n_output_dims = int(self.include_xyz) * self.encoding.n_input_dims + self.encoding.n_output_dims | |
def forward(self, x, *args): | |
return self.encoding(x, *args) if not self.include_xyz else torch.cat([x * self.xyz_scale + self.xyz_offset, self.encoding(x, *args)], dim=-1) | |
def update_step(self, epoch, global_step): | |
update_module_step(self.encoding, epoch, global_step) | |
def get_encoding(n_input_dims, config): | |
# input suppose to be range [0, 1] | |
if config.otype == 'VanillaFrequency': | |
encoding = VanillaFrequency(n_input_dims, config_to_primitive(config)) | |
elif config.otype == 'ProgressiveBandHashGrid': | |
encoding = ProgressiveBandHashGrid(n_input_dims, config_to_primitive(config)) | |
else: | |
with torch.cuda.device(get_rank()): | |
encoding = tcnn.Encoding(n_input_dims, config_to_primitive(config)) | |
encoding = CompositeEncoding(encoding, include_xyz=config.get('include_xyz', False), xyz_scale=2., xyz_offset=-1.) | |
return encoding | |
class VanillaMLP(nn.Module): | |
def __init__(self, dim_in, dim_out, config): | |
super().__init__() | |
self.n_neurons, self.n_hidden_layers = config['n_neurons'], config['n_hidden_layers'] | |
self.sphere_init, self.weight_norm = config.get('sphere_init', False), config.get('weight_norm', False) | |
self.sphere_init_radius = config.get('sphere_init_radius', 0.5) | |
self.layers = [self.make_linear(dim_in, self.n_neurons, is_first=True, is_last=False), self.make_activation()] | |
for i in range(self.n_hidden_layers - 1): | |
self.layers += [self.make_linear(self.n_neurons, self.n_neurons, is_first=False, is_last=False), self.make_activation()] | |
self.layers += [self.make_linear(self.n_neurons, dim_out, is_first=False, is_last=True)] | |
self.layers = nn.Sequential(*self.layers) | |
self.output_activation = get_activation(config['output_activation']) | |
def forward(self, x): | |
x = self.layers(x.float()) | |
x = self.output_activation(x) | |
return x | |
def make_linear(self, dim_in, dim_out, is_first, is_last): | |
layer = nn.Linear(dim_in, dim_out, bias=True) # network without bias will degrade quality | |
if self.sphere_init: | |
if is_last: | |
torch.nn.init.constant_(layer.bias, -self.sphere_init_radius) | |
torch.nn.init.normal_(layer.weight, mean=math.sqrt(math.pi) / math.sqrt(dim_in), std=0.0001) | |
elif is_first: | |
torch.nn.init.constant_(layer.bias, 0.0) | |
torch.nn.init.constant_(layer.weight[:, 3:], 0.0) | |
torch.nn.init.normal_(layer.weight[:, :3], 0.0, math.sqrt(2) / math.sqrt(dim_out)) | |
else: | |
torch.nn.init.constant_(layer.bias, 0.0) | |
torch.nn.init.normal_(layer.weight, 0.0, math.sqrt(2) / math.sqrt(dim_out)) | |
else: | |
torch.nn.init.constant_(layer.bias, 0.0) | |
torch.nn.init.kaiming_uniform_(layer.weight, nonlinearity='relu') | |
if self.weight_norm: | |
layer = nn.utils.weight_norm(layer) | |
return layer | |
def make_activation(self): | |
if self.sphere_init: | |
return nn.Softplus(beta=100) | |
else: | |
return nn.ReLU(inplace=True) | |
def sphere_init_tcnn_network(n_input_dims, n_output_dims, config, network): | |
rank_zero_debug('Initialize tcnn MLP to approximately represent a sphere.') | |
""" | |
from https://github.com/NVlabs/tiny-cuda-nn/issues/96 | |
It's the weight matrices of each layer laid out in row-major order and then concatenated. | |
Notably: inputs and output dimensions are padded to multiples of 8 (CutlassMLP) or 16 (FullyFusedMLP). | |
The padded input dimensions get a constant value of 1.0, | |
whereas the padded output dimensions are simply ignored, | |
so the weights pertaining to those can have any value. | |
""" | |
padto = 16 if config.otype == 'FullyFusedMLP' else 8 | |
n_input_dims = n_input_dims + (padto - n_input_dims % padto) % padto | |
n_output_dims = n_output_dims + (padto - n_output_dims % padto) % padto | |
data = list(network.parameters())[0].data | |
assert data.shape[0] == (n_input_dims + n_output_dims) * config.n_neurons + (config.n_hidden_layers - 1) * config.n_neurons**2 | |
new_data = [] | |
# first layer | |
weight = torch.zeros((config.n_neurons, n_input_dims)).to(data) | |
torch.nn.init.constant_(weight[:, 3:], 0.0) | |
torch.nn.init.normal_(weight[:, :3], 0.0, math.sqrt(2) / math.sqrt(config.n_neurons)) | |
new_data.append(weight.flatten()) | |
# hidden layers | |
for i in range(config.n_hidden_layers - 1): | |
weight = torch.zeros((config.n_neurons, config.n_neurons)).to(data) | |
torch.nn.init.normal_(weight, 0.0, math.sqrt(2) / math.sqrt(config.n_neurons)) | |
new_data.append(weight.flatten()) | |
# last layer | |
weight = torch.zeros((n_output_dims, config.n_neurons)).to(data) | |
torch.nn.init.normal_(weight, mean=math.sqrt(math.pi) / math.sqrt(config.n_neurons), std=0.0001) | |
new_data.append(weight.flatten()) | |
new_data = torch.cat(new_data) | |
data.copy_(new_data) | |
def get_mlp(n_input_dims, n_output_dims, config): | |
if config.otype == 'VanillaMLP': | |
network = VanillaMLP(n_input_dims, n_output_dims, config_to_primitive(config)) | |
else: | |
with torch.cuda.device(get_rank()): | |
network = tcnn.Network(n_input_dims, n_output_dims, config_to_primitive(config)) | |
if config.get('sphere_init', False): | |
sphere_init_tcnn_network(n_input_dims, n_output_dims, config, network) | |
return network | |
class EncodingWithNetwork(nn.Module): | |
def __init__(self, encoding, network): | |
super().__init__() | |
self.encoding, self.network = encoding, network | |
def forward(self, x): | |
return self.network(self.encoding(x)) | |
def update_step(self, epoch, global_step): | |
update_module_step(self.encoding, epoch, global_step) | |
update_module_step(self.network, epoch, global_step) | |
def get_encoding_with_network(n_input_dims, n_output_dims, encoding_config, network_config): | |
# input suppose to be range [0, 1] | |
if encoding_config.otype in ['VanillaFrequency', 'ProgressiveBandHashGrid'] \ | |
or network_config.otype in ['VanillaMLP']: | |
encoding = get_encoding(n_input_dims, encoding_config) | |
network = get_mlp(encoding.n_output_dims, n_output_dims, network_config) | |
encoding_with_network = EncodingWithNetwork(encoding, network) | |
else: | |
with torch.cuda.device(get_rank()): | |
encoding_with_network = tcnn.NetworkWithInputEncoding( | |
n_input_dims=n_input_dims, | |
n_output_dims=n_output_dims, | |
encoding_config=config_to_primitive(encoding_config), | |
network_config=config_to_primitive(network_config) | |
) | |
return encoding_with_network | |