V3D / configs /example_training /toy /mnist_cond_l1_loss.yaml
heheyas
init
cfb7702
raw
history blame
2.54 kB
model:
base_learning_rate: 1.0e-4
target: sgm.models.diffusion.DiffusionEngine
params:
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.Denoiser
params:
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
params:
sigma_data: 1.0
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
in_channels: 1
out_channels: 1
model_channels: 32
attention_resolutions: []
num_res_blocks: 4
channel_mult: [1, 2, 2]
num_head_channels: 32
num_classes: sequential
adm_in_channels: 128
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: True
input_key: cls
ucg_rate: 0.2
target: sgm.modules.encoders.modules.ClassEmbedder
params:
embed_dim: 128
n_classes: 10
first_stage_config:
target: sgm.models.autoencoder.IdentityFirstStage
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
params:
loss_type: l1
loss_weighting_config:
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
params:
sigma_data: 1.0
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
sampler_config:
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
params:
num_steps: 50
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
guider_config:
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
params:
scale: 3.0
data:
target: sgm.data.mnist.MNISTLoader
params:
batch_size: 512
num_workers: 1
lightning:
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
metrics_over_trainsteps_checkpoint:
params:
every_n_train_steps: 25000
image_logger:
target: main.ImageLogger
params:
disabled: False
batch_frequency: 1000
max_images: 64
increase_log_steps: True
log_first_step: False
log_images_kwargs:
use_ema_scope: False
N: 64
n_rows: 8
trainer:
devices: 0,
benchmark: True
num_sanity_val_steps: 0
accumulate_grad_batches: 1
max_epochs: 20