Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import models | |
from models.base import BaseModel | |
from models.utils import chunk_batch | |
from systems.utils import update_module_step | |
from nerfacc import ContractionType, OccupancyGrid, ray_marching, render_weight_from_density, accumulate_along_rays | |
class NeRFModel(BaseModel): | |
def setup(self): | |
self.geometry = models.make(self.config.geometry.name, self.config.geometry) | |
self.texture = models.make(self.config.texture.name, self.config.texture) | |
self.register_buffer('scene_aabb', torch.as_tensor([-self.config.radius, -self.config.radius, -self.config.radius, self.config.radius, self.config.radius, self.config.radius], dtype=torch.float32)) | |
if self.config.learned_background: | |
self.occupancy_grid_res = 256 | |
self.near_plane, self.far_plane = 0.2, 1e4 | |
self.cone_angle = 10**(math.log10(self.far_plane) / self.config.num_samples_per_ray) - 1. # approximate | |
self.render_step_size = 0.01 # render_step_size = max(distance_to_camera * self.cone_angle, self.render_step_size) | |
self.contraction_type = ContractionType.UN_BOUNDED_SPHERE | |
else: | |
self.occupancy_grid_res = 128 | |
self.near_plane, self.far_plane = None, None | |
self.cone_angle = 0.0 | |
self.render_step_size = 1.732 * 2 * self.config.radius / self.config.num_samples_per_ray | |
self.contraction_type = ContractionType.AABB | |
self.geometry.contraction_type = self.contraction_type | |
if self.config.grid_prune: | |
self.occupancy_grid = OccupancyGrid( | |
roi_aabb=self.scene_aabb, | |
resolution=self.occupancy_grid_res, | |
contraction_type=self.contraction_type | |
) | |
self.randomized = self.config.randomized | |
self.background_color = None | |
def update_step(self, epoch, global_step): | |
update_module_step(self.geometry, epoch, global_step) | |
update_module_step(self.texture, epoch, global_step) | |
def occ_eval_fn(x): | |
density, _ = self.geometry(x) | |
# approximate for 1 - torch.exp(-density[...,None] * self.render_step_size) based on taylor series | |
return density[...,None] * self.render_step_size | |
if self.training and self.config.grid_prune: | |
self.occupancy_grid.every_n_step(step=global_step, occ_eval_fn=occ_eval_fn) | |
def isosurface(self): | |
mesh = self.geometry.isosurface() | |
return mesh | |
def forward_(self, rays): | |
n_rays = rays.shape[0] | |
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] # both (N_rays, 3) | |
def sigma_fn(t_starts, t_ends, ray_indices): | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
positions = t_origins + t_dirs * (t_starts + t_ends) / 2. | |
density, _ = self.geometry(positions) | |
return density[...,None] | |
def rgb_sigma_fn(t_starts, t_ends, ray_indices): | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
positions = t_origins + t_dirs * (t_starts + t_ends) / 2. | |
density, feature = self.geometry(positions) | |
rgb = self.texture(feature, t_dirs) | |
return rgb, density[...,None] | |
with torch.no_grad(): | |
ray_indices, t_starts, t_ends = ray_marching( | |
rays_o, rays_d, | |
scene_aabb=None if self.config.learned_background else self.scene_aabb, | |
grid=self.occupancy_grid if self.config.grid_prune else None, | |
sigma_fn=sigma_fn, | |
near_plane=self.near_plane, far_plane=self.far_plane, | |
render_step_size=self.render_step_size, | |
stratified=self.randomized, | |
cone_angle=self.cone_angle, | |
alpha_thre=0.0 | |
) | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
midpoints = (t_starts + t_ends) / 2. | |
positions = t_origins + t_dirs * midpoints | |
intervals = t_ends - t_starts | |
density, feature = self.geometry(positions) | |
rgb = self.texture(feature, t_dirs) | |
weights = render_weight_from_density(t_starts, t_ends, density[...,None], ray_indices=ray_indices, n_rays=n_rays) | |
opacity = accumulate_along_rays(weights, ray_indices, values=None, n_rays=n_rays) | |
depth = accumulate_along_rays(weights, ray_indices, values=midpoints, n_rays=n_rays) | |
comp_rgb = accumulate_along_rays(weights, ray_indices, values=rgb, n_rays=n_rays) | |
comp_rgb = comp_rgb + self.background_color * (1.0 - opacity) | |
out = { | |
'comp_rgb': comp_rgb, | |
'opacity': opacity, | |
'depth': depth, | |
'rays_valid': opacity > 0, | |
'num_samples': torch.as_tensor([len(t_starts)], dtype=torch.int32, device=rays.device) | |
} | |
if self.training: | |
out.update({ | |
'weights': weights.view(-1), | |
'points': midpoints.view(-1), | |
'intervals': intervals.view(-1), | |
'ray_indices': ray_indices.view(-1) | |
}) | |
return out | |
def forward(self, rays): | |
if self.training: | |
out = self.forward_(rays) | |
else: | |
out = chunk_batch(self.forward_, self.config.ray_chunk, True, rays) | |
return { | |
**out, | |
} | |
def train(self, mode=True): | |
self.randomized = mode and self.config.randomized | |
return super().train(mode=mode) | |
def eval(self): | |
self.randomized = False | |
return super().eval() | |
def regularizations(self, out): | |
losses = {} | |
losses.update(self.geometry.regularizations(out)) | |
losses.update(self.texture.regularizations(out)) | |
return losses | |
def export(self, export_config): | |
mesh = self.isosurface() | |
if export_config.export_vertex_color: | |
_, feature = chunk_batch(self.geometry, export_config.chunk_size, False, mesh['v_pos'].to(self.rank)) | |
viewdirs = torch.zeros(feature.shape[0], 3).to(feature) | |
viewdirs[...,2] = -1. # set the viewing directions to be -z (looking down) | |
rgb = self.texture(feature, viewdirs).clamp(0,1) | |
mesh['v_rgb'] = rgb.cpu() | |
return mesh | |