Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from pytorch_lightning.utilities.rank_zero import rank_zero_info | |
import models | |
from models.base import BaseModel | |
from models.utils import scale_anything, get_activation, cleanup, chunk_batch | |
from models.network_utils import get_encoding, get_mlp, get_encoding_with_network | |
from utils.misc import get_rank | |
from systems.utils import update_module_step | |
from nerfacc import ContractionType | |
def contract_to_unisphere(x, radius, contraction_type): | |
if contraction_type == ContractionType.AABB: | |
x = scale_anything(x, (-radius, radius), (0, 1)) | |
elif contraction_type == ContractionType.UN_BOUNDED_SPHERE: | |
x = scale_anything(x, (-radius, radius), (0, 1)) | |
x = x * 2 - 1 # aabb is at [-1, 1] | |
mag = x.norm(dim=-1, keepdim=True) | |
mask = mag.squeeze(-1) > 1 | |
x[mask] = (2 - 1 / mag[mask]) * (x[mask] / mag[mask]) | |
x = x / 4 + 0.5 # [-inf, inf] is at [0, 1] | |
else: | |
raise NotImplementedError | |
return x | |
class MarchingCubeHelper(nn.Module): | |
def __init__(self, resolution, use_torch=True): | |
super().__init__() | |
self.resolution = resolution | |
self.use_torch = use_torch | |
self.points_range = (0, 1) | |
if self.use_torch: | |
import torchmcubes | |
self.mc_func = torchmcubes.marching_cubes | |
else: | |
import mcubes | |
self.mc_func = mcubes.marching_cubes | |
self.verts = None | |
def grid_vertices(self): | |
if self.verts is None: | |
x, y, z = torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution), torch.linspace(*self.points_range, self.resolution) | |
x, y, z = torch.meshgrid(x, y, z, indexing='ij') | |
verts = torch.cat([x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1).reshape(-1, 3) | |
self.verts = verts | |
return self.verts | |
def forward(self, level, threshold=0.): | |
level = level.float().view(self.resolution, self.resolution, self.resolution) | |
if self.use_torch: | |
verts, faces = self.mc_func(level.to(get_rank()), threshold) | |
verts, faces = verts.cpu(), faces.cpu().long() | |
else: | |
verts, faces = self.mc_func(-level.numpy(), threshold) # transform to numpy | |
verts, faces = torch.from_numpy(verts.astype(np.float32)), torch.from_numpy(faces.astype(np.int64)) # transform back to pytorch | |
verts = verts / (self.resolution - 1.) | |
return { | |
'v_pos': verts, | |
't_pos_idx': faces | |
} | |
class BaseImplicitGeometry(BaseModel): | |
def __init__(self, config): | |
super().__init__(config) | |
if self.config.isosurface is not None: | |
assert self.config.isosurface.method in ['mc', 'mc-torch'] | |
if self.config.isosurface.method == 'mc-torch': | |
raise NotImplementedError("Please do not use mc-torch. It currently has some scaling issues I haven't fixed yet.") | |
self.helper = MarchingCubeHelper(self.config.isosurface.resolution, use_torch=self.config.isosurface.method=='mc-torch') | |
self.radius = self.config.radius | |
self.contraction_type = None # assigned in system | |
def forward_level(self, points): | |
raise NotImplementedError | |
def isosurface_(self, vmin, vmax): | |
def batch_func(x): | |
x = torch.stack([ | |
scale_anything(x[...,0], (0, 1), (vmin[0], vmax[0])), | |
scale_anything(x[...,1], (0, 1), (vmin[1], vmax[1])), | |
scale_anything(x[...,2], (0, 1), (vmin[2], vmax[2])), | |
], dim=-1).to(self.rank) | |
rv = self.forward_level(x).cpu() | |
cleanup() | |
return rv | |
level = chunk_batch(batch_func, self.config.isosurface.chunk, True, self.helper.grid_vertices()) | |
mesh = self.helper(level, threshold=self.config.isosurface.threshold) | |
mesh['v_pos'] = torch.stack([ | |
scale_anything(mesh['v_pos'][...,0], (0, 1), (vmin[0], vmax[0])), | |
scale_anything(mesh['v_pos'][...,1], (0, 1), (vmin[1], vmax[1])), | |
scale_anything(mesh['v_pos'][...,2], (0, 1), (vmin[2], vmax[2])) | |
], dim=-1) | |
return mesh | |
def isosurface(self): | |
if self.config.isosurface is None: | |
raise NotImplementedError | |
mesh_coarse = self.isosurface_((-self.radius, -self.radius, -self.radius), (self.radius, self.radius, self.radius)) | |
vmin, vmax = mesh_coarse['v_pos'].amin(dim=0), mesh_coarse['v_pos'].amax(dim=0) | |
vmin_ = (vmin - (vmax - vmin) * 0.1).clamp(-self.radius, self.radius) | |
vmax_ = (vmax + (vmax - vmin) * 0.1).clamp(-self.radius, self.radius) | |
mesh_fine = self.isosurface_(vmin_, vmax_) | |
return mesh_fine | |
class VolumeDensity(BaseImplicitGeometry): | |
def setup(self): | |
self.n_input_dims = self.config.get('n_input_dims', 3) | |
self.n_output_dims = self.config.feature_dim | |
self.encoding_with_network = get_encoding_with_network(self.n_input_dims, self.n_output_dims, self.config.xyz_encoding_config, self.config.mlp_network_config) | |
def forward(self, points): | |
points = contract_to_unisphere(points, self.radius, self.contraction_type) | |
out = self.encoding_with_network(points.view(-1, self.n_input_dims)).view(*points.shape[:-1], self.n_output_dims).float() | |
density, feature = out[...,0], out | |
if 'density_activation' in self.config: | |
density = get_activation(self.config.density_activation)(density + float(self.config.density_bias)) | |
if 'feature_activation' in self.config: | |
feature = get_activation(self.config.feature_activation)(feature) | |
return density, feature | |
def forward_level(self, points): | |
points = contract_to_unisphere(points, self.radius, self.contraction_type) | |
density = self.encoding_with_network(points.reshape(-1, self.n_input_dims)).reshape(*points.shape[:-1], self.n_output_dims)[...,0] | |
if 'density_activation' in self.config: | |
density = get_activation(self.config.density_activation)(density + float(self.config.density_bias)) | |
return -density | |
def update_step(self, epoch, global_step): | |
update_module_step(self.encoding_with_network, epoch, global_step) | |
class VolumeSDF(BaseImplicitGeometry): | |
def setup(self): | |
self.n_output_dims = self.config.feature_dim | |
encoding = get_encoding(3, self.config.xyz_encoding_config) | |
network = get_mlp(encoding.n_output_dims, self.n_output_dims, self.config.mlp_network_config) | |
self.encoding, self.network = encoding, network | |
self.grad_type = self.config.grad_type | |
self.finite_difference_eps = self.config.get('finite_difference_eps', 1e-3) | |
# the actual value used in training | |
# will update at certain steps if finite_difference_eps="progressive" | |
self._finite_difference_eps = None | |
if self.grad_type == 'finite_difference': | |
rank_zero_info(f"Using finite difference to compute gradients with eps={self.finite_difference_eps}") | |
def forward(self, points, with_grad=True, with_feature=True, with_laplace=False): | |
with torch.inference_mode(torch.is_inference_mode_enabled() and not (with_grad and self.grad_type == 'analytic')): | |
with torch.set_grad_enabled(self.training or (with_grad and self.grad_type == 'analytic')): | |
if with_grad and self.grad_type == 'analytic': | |
if not self.training: | |
points = points.clone() # points may be in inference mode, get a copy to enable grad | |
points.requires_grad_(True) | |
points_ = points # points in the original scale | |
points = contract_to_unisphere(points, self.radius, self.contraction_type) # points normalized to (0, 1) | |
out = self.network(self.encoding(points.view(-1, 3))).view(*points.shape[:-1], self.n_output_dims).float() | |
sdf, feature = out[...,0], out | |
if 'sdf_activation' in self.config: | |
sdf = get_activation(self.config.sdf_activation)(sdf + float(self.config.sdf_bias)) | |
if 'feature_activation' in self.config: | |
feature = get_activation(self.config.feature_activation)(feature) | |
if with_grad: | |
if self.grad_type == 'analytic': | |
grad = torch.autograd.grad( | |
sdf, points_, grad_outputs=torch.ones_like(sdf), | |
create_graph=True, retain_graph=True, only_inputs=True | |
)[0] | |
elif self.grad_type == 'finite_difference': | |
eps = self._finite_difference_eps | |
offsets = torch.as_tensor( | |
[ | |
[eps, 0.0, 0.0], | |
[-eps, 0.0, 0.0], | |
[0.0, eps, 0.0], | |
[0.0, -eps, 0.0], | |
[0.0, 0.0, eps], | |
[0.0, 0.0, -eps], | |
] | |
).to(points_) | |
points_d_ = (points_[...,None,:] + offsets).clamp(-self.radius, self.radius) | |
points_d = scale_anything(points_d_, (-self.radius, self.radius), (0, 1)) | |
points_d_sdf = self.network(self.encoding(points_d.view(-1, 3)))[...,0].view(*points.shape[:-1], 6).float() | |
grad = 0.5 * (points_d_sdf[..., 0::2] - points_d_sdf[..., 1::2]) / eps | |
if with_laplace: | |
laplace = (points_d_sdf[..., 0::2] + points_d_sdf[..., 1::2] - 2 * sdf[..., None]).sum(-1) / (eps ** 2) | |
rv = [sdf] | |
if with_grad: | |
rv.append(grad) | |
if with_feature: | |
rv.append(feature) | |
if with_laplace: | |
assert self.config.grad_type == 'finite_difference', "Laplace computation is only supported with grad_type='finite_difference'" | |
rv.append(laplace) | |
rv = [v if self.training else v.detach() for v in rv] | |
return rv[0] if len(rv) == 1 else rv | |
def forward_level(self, points): | |
points = contract_to_unisphere(points, self.radius, self.contraction_type) # points normalized to (0, 1) | |
sdf = self.network(self.encoding(points.view(-1, 3))).view(*points.shape[:-1], self.n_output_dims)[...,0] | |
if 'sdf_activation' in self.config: | |
sdf = get_activation(self.config.sdf_activation)(sdf + float(self.config.sdf_bias)) | |
return sdf | |
def update_step(self, epoch, global_step): | |
update_module_step(self.encoding, epoch, global_step) | |
update_module_step(self.network, epoch, global_step) | |
if self.grad_type == 'finite_difference': | |
if isinstance(self.finite_difference_eps, float): | |
self._finite_difference_eps = self.finite_difference_eps | |
elif self.finite_difference_eps == 'progressive': | |
hg_conf = self.config.xyz_encoding_config | |
assert hg_conf.otype == "ProgressiveBandHashGrid", "finite_difference_eps='progressive' only works with ProgressiveBandHashGrid" | |
current_level = min( | |
hg_conf.start_level + max(global_step - hg_conf.start_step, 0) // hg_conf.update_steps, | |
hg_conf.n_levels | |
) | |
grid_res = hg_conf.base_resolution * hg_conf.per_level_scale**(current_level - 1) | |
grid_size = 2 * self.config.radius / grid_res | |
if grid_size != self._finite_difference_eps: | |
rank_zero_info(f"Update finite_difference_eps to {grid_size}") | |
self._finite_difference_eps = grid_size | |
else: | |
raise ValueError(f"Unknown finite_difference_eps={self.finite_difference_eps}") | |