yolo_layoutlm / working_yolo_pipeline.py
aagamjtdev's picture
add pipeline helper file
58a2a88
raw
history blame
43.7 kB
import json
import argparse
import os
import re
import torch
import torch.nn as nn
from TorchCRF import CRF
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model, LayoutLMv3Config
from typing import List, Dict, Any, Optional, Union, Tuple
import fitz # PyMuPDF
import numpy as np
import cv2
from ultralytics import YOLO
import glob
import pytesseract
from PIL import Image
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
import sys
import io
import base64
import tempfile # Recommended for robust temporary file handling
# ============================================================================
# --- CONFIGURATION AND CONSTANTS ---
# ============================================================================
# NOTE: Update these paths to match your environment before running!
WEIGHTS_PATH = '/home/dipesh/Downloads/api-mcq/YOLO_MATH/yolo_split_data/runs/detect/math_figure_detector_v3/weights/best.pt'
DEFAULT_LAYOUTLMV3_MODEL_PATH = "checkpoints/layoutlmv3_trained_20251031_102846_recovered.pth"
# DIRECTORY CONFIGURATION
# NOTE: These are now used for temporary data extraction/storage
OCR_JSON_OUTPUT_DIR = './ocr_json_output_final' # Still needed for Phase 1 output
FIGURE_EXTRACTION_DIR = './figure_extraction'
TEMP_IMAGE_DIR = './temp_pdf_images'
# Detection parameters
CONF_THRESHOLD = 0.2
TARGET_CLASSES = ['figure', 'equation']
IOU_MERGE_THRESHOLD = 0.4
IOA_SUPPRESSION_THRESHOLD = 0.7
LINE_TOLERANCE = 15
# Global counters for sequential numbering across the entire PDF
GLOBAL_FIGURE_COUNT = 0
GLOBAL_EQUATION_COUNT = 0
# LayoutLMv3 Labels
ID_TO_LABEL = {
0: "O",
1: "B-QUESTION", 2: "I-QUESTION",
3: "B-OPTION", 4: "I-OPTION",
5: "B-ANSWER", 6: "I-ANSWER",
7: "B-SECTION_HEADING", 8: "I-SECTION_HEADING",
9: "B-PASSAGE", 10: "I-PASSAGE"
}
NUM_LABELS = len(ID_TO_LABEL)
# ============================================================================
# --- PHASE 1: YOLO/OCR PREPROCESSING FUNCTIONS (Word Extraction) ---
# --- (Includes all necessary helper functions from the first prompt) ---
# ============================================================================
def calculate_iou(box1, box2):
x1_a, y1_a, x2_a, y2_a = box1
x1_b, y1_b, x2_b, y2_b = box2
x_left = max(x1_a, x1_b)
y_top = max(y1_a, y1_b)
x_right = min(x2_a, x2_b)
y_bottom = min(y2_a, y2_b)
intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
box_b_area = (x2_b - x1_b) * (y2_b - y1_b)
union_area = float(box_a_area + box_b_area - intersection_area)
return intersection_area / union_area if union_area > 0 else 0
def calculate_ioa(box1, box2):
x1_a, y1_a, x2_a, y2_a = box1
x1_b, y1_b, x2_b, y2_b = box2
x_left = max(x1_a, x1_b)
y_top = max(y1_a, y1_b)
x_right = min(x2_a, x2_b)
y_bottom = min(y2_a, y2_b)
intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
return intersection_area / box_a_area if box_a_area > 0 else 0
def merge_overlapping_boxes(detections, iou_threshold):
if not detections: return []
detections.sort(key=lambda d: d['conf'], reverse=True)
merged_detections = []
is_merged = [False] * len(detections)
for i in range(len(detections)):
if is_merged[i]: continue
current_box = detections[i]['coords']
current_class = detections[i]['class']
merged_x1, merged_y1, merged_x2, merged_y2 = current_box
for j in range(i + 1, len(detections)):
if is_merged[j] or detections[j]['class'] != current_class: continue
other_box = detections[j]['coords']
iou = calculate_iou(current_box, other_box)
if iou > iou_threshold:
merged_x1 = min(merged_x1, other_box[0])
merged_y1 = min(merged_y1, other_box[1])
merged_x2 = max(merged_x2, other_box[2])
merged_y2 = max(merged_y2, other_box[3])
is_merged[j] = True
merged_detections.append({
'coords': (merged_x1, merged_y1, merged_x2, merged_y2),
'y1': merged_y1, 'class': current_class, 'conf': detections[i]['conf']
})
return merged_detections
def pdf_to_images(pdf_path, temp_dir):
print("\n[YOLO/OCR STEP 1.1: PDF CONVERSION]")
try:
doc = fitz.open(pdf_path)
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
image_paths = []
mat = fitz.Matrix(2.0, 2.0)
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
pix = page.get_pixmap(matrix=mat)
img_filename = f"{pdf_name}_page{page_num + 1}.png"
img_path = os.path.join(temp_dir, img_filename)
pix.save(img_path)
image_paths.append(img_path)
doc.close()
print(f" ✅ PDF Conversion complete. {len(image_paths)} images generated.")
return image_paths
except Exception as e:
print(f"❌ ERROR processing PDF {pdf_path}: {e}")
return []
def preprocess_and_ocr_page(image_path, model, pdf_name, page_num):
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
page_filename = os.path.basename(image_path)
original_img = cv2.imread(image_path)
if original_img is None: return None
# --- A. YOLO DETECTION AND MERGING ---
results = model.predict(source=image_path, conf=CONF_THRESHOLD, imgsz=640, verbose=False)
relevant_detections = []
if results and results[0].boxes:
for box in results[0].boxes:
class_id = int(box.cls[0])
class_name = model.names[class_id]
if class_name in TARGET_CLASSES:
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
relevant_detections.append(
{'coords': (x1, y1, x2, y2), 'y1': y1, 'class': class_name, 'conf': float(box.conf[0])})
merged_detections = merge_overlapping_boxes(relevant_detections, IOU_MERGE_THRESHOLD)
# --- B. COMPONENT EXTRACTION AND TAGGING ---
component_metadata = []
for detection in merged_detections:
x1, y1, x2, y2 = detection['coords']
class_name = detection['class']
if class_name == 'figure':
GLOBAL_FIGURE_COUNT += 1
counter = GLOBAL_FIGURE_COUNT
component_word = f"FIGURE{counter}"
elif class_name == 'equation':
GLOBAL_EQUATION_COUNT += 1
counter = GLOBAL_EQUATION_COUNT
component_word = f"EQUATION{counter}"
else:
continue
component_crop = original_img[y1:y2, x1:x2]
component_filename = f"{pdf_name}_page{page_num}_{class_name}{counter}.png"
cv2.imwrite(os.path.join(FIGURE_EXTRACTION_DIR, component_filename), component_crop)
y_midpoint = (y1 + y2) // 2
component_metadata.append({
'type': class_name, 'word': component_word,
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'y0': int(y_midpoint), 'x0': int(x1)
})
# --- C. TESSERACT OCR ---
try:
pil_img = Image.fromarray(cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB))
hocr_data = pytesseract.image_to_data(pil_img, output_type=pytesseract.Output.DICT)
raw_ocr_output = []
for i in range(len(hocr_data['level'])):
text = hocr_data['text'][i].strip()
if text and hocr_data['conf'][i] > -1:
x1 = int(hocr_data['left'][i])
y1 = int(hocr_data['top'][i])
x2 = x1 + int(hocr_data['width'][i])
y2 = y1 + int(hocr_data['height'][i])
raw_ocr_output.append({
'type': 'text', 'word': text, 'confidence': float(hocr_data['conf'][i]),
'bbox': [x1, y1, x2, y2], 'y0': y1, 'x0': x1
})
except Exception as e:
print(f" ❌ Tesseract OCR Error on {page_filename}: {e}")
return None
# --- D. OCR CLEANING AND MERGING (Using IoA) ---
items_to_sort = []
for ocr_word in raw_ocr_output:
is_suppressed = False
for component in component_metadata:
ioa = calculate_ioa(ocr_word['bbox'], component['bbox'])
if ioa > IOA_SUPPRESSION_THRESHOLD:
is_suppressed = True
break
if not is_suppressed:
items_to_sort.append(ocr_word)
items_to_sort.extend(component_metadata)
# --- E. SOPHISTICATED LINE-BASED SORTING ---
items_to_sort.sort(key=lambda x: (x['y0'], x['x0']))
lines = []
for item in items_to_sort:
placed = False
for line in lines:
y_ref = min(it['y0'] for it in line)
if abs(y_ref - item['y0']) < LINE_TOLERANCE:
line.append(item)
placed = True
break
if not placed and item['type'] in ['equation', 'figure']:
for line in lines:
y_ref = min(it['y0'] for it in line)
if abs(y_ref - item['y0']) < 20:
line.append(item)
placed = True
break
if not placed:
lines.append([item])
for line in lines:
line.sort(key=lambda x: x['x0'])
final_output = []
for line in lines:
for item in line:
data_item = {"word": item["word"], "bbox": item["bbox"], "type": item["type"]}
if 'tag' in item: data_item['tag'] = item['tag']
if 'confidence' in item: data_item['confidence'] = item['confidence']
final_output.append(data_item)
return final_output
def get_word_data_for_detection(page: fitz.Page, top_margin_percent=0.10, bottom_margin_percent=0.10) -> list:
word_data = page.get_text("words")
if len(word_data) == 0:
try:
pix = page.get_pixmap(matrix=fitz.Matrix(3, 3))
img_bytes = pix.tobytes("png")
img = Image.open(io.BytesIO(img_bytes))
data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT)
full_word_data = []
for i in range(len(data['level'])):
if data['text'][i].strip():
x1, y1 = data['left'][i] / 3, data['top'][i] / 3
x2, y2 = x1 + data['width'][i] / 3, y1 + data['height'][i] / 3
full_word_data.append((data['text'][i], x1, y1, x2, y2))
word_data = full_word_data
except Exception:
return []
else:
word_data = [(w[4], w[0], w[1], w[2], w[3]) for w in word_data]
page_height = page.rect.height
y_min = page_height * top_margin_percent
y_max = page_height * (1 - bottom_margin_percent)
return [d for d in word_data if d[2] >= y_min and d[4] <= y_max]
def calculate_x_gutters(word_data: list, params: Dict) -> List[int]:
if not word_data: return []
x_points = []
for _, x1, _, x2, _ in word_data: x_points.extend([x1, x2])
max_x = max(x_points)
bin_size = params['cluster_bin_size']
num_bins = int(np.ceil(max_x / bin_size))
hist, bin_edges = np.histogram(x_points, bins=num_bins, range=(0, max_x))
smoothed_hist = gaussian_filter1d(hist.astype(float), sigma=params['cluster_smoothing'])
inverted_signal = np.max(smoothed_hist) - smoothed_hist
peaks, properties = find_peaks(
inverted_signal, height=0, distance=params['cluster_min_width'] / bin_size
)
if not peaks.size: return []
threshold_value = np.percentile(smoothed_hist, params['cluster_threshold_percentile'])
inverted_threshold = np.max(smoothed_hist) - threshold_value
significant_peaks = peaks[properties['peak_heights'] >= inverted_threshold]
separator_x_coords = [int(bin_edges[p]) for p in significant_peaks]
final_separators = []
prominence_threshold = params['cluster_prominence'] * np.max(smoothed_hist)
for x_coord in separator_x_coords:
bin_idx = np.searchsorted(bin_edges, x_coord) - 1
window_size = int(params['cluster_min_width'] / bin_size)
left_start, left_end = max(0, bin_idx - window_size), bin_idx
right_start, right_end = bin_idx + 1, min(len(smoothed_hist), bin_idx + 1 + window_size)
if left_end <= left_start or right_end <= right_start: continue
avg_left_density = np.mean(smoothed_hist[left_start:left_end])
avg_right_density = np.mean(smoothed_hist[right_start:right_end])
if avg_left_density >= prominence_threshold and avg_right_density >= prominence_threshold:
final_separators.append(x_coord)
return sorted(final_separators)
def detect_column_gutters(pdf_path: str, page_num: int, **params) -> Optional[int]:
try:
doc = fitz.open(pdf_path)
page = doc.load_page(page_num)
word_data = get_word_data_for_detection(page, params.get('top_margin_percent', 0.10),
params.get('bottom_margin_percent', 0.10))
doc.close()
if not word_data: return None
separators = calculate_x_gutters(word_data, params)
if len(separators) == 1:
return separators[0]
elif len(separators) > 1:
page_width = page.rect.width
center_x = page_width / 2
return min(separators, key=lambda x: abs(x - center_x))
return None
except Exception:
return None
def _merge_integrity(all_words_by_page: List[str], all_bboxes_raw: List[List[int]],
column_separator_x: Optional[int]) -> List[List[str]]:
if column_separator_x is None: return [all_words_by_page]
left_column_words, right_column_words = [], []
for word, bbox_raw in zip(all_words_by_page, all_bboxes_raw):
center_x = (bbox_raw[0] + bbox_raw[2]) / 2
if center_x < column_separator_x:
left_column_words.append(word)
else:
right_column_words.append(word)
return [c for c in [left_column_words, right_column_words] if c]
def run_single_pdf_preprocessing(pdf_path: str, preprocessed_json_path: str) -> Optional[str]:
"""Runs the YOLO/OCR pipeline and returns the path to the combined JSON output."""
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
# Reset globals for a new PDF run
GLOBAL_FIGURE_COUNT = 0
GLOBAL_EQUATION_COUNT = 0
print("\n" + "=" * 80)
print("--- 1. STARTING YOLO/OCR PREPROCESSING PIPELINE ---")
print("=" * 80)
if not os.path.exists(pdf_path):
print(f"❌ FATAL ERROR: Input PDF not found at {pdf_path}.")
return None
if not os.path.exists(WEIGHTS_PATH):
print(f"❌ FATAL ERROR: YOLO Weights not found at {WEIGHTS_PATH}.")
return None
# Ensure required directories exist
os.makedirs(os.path.dirname(preprocessed_json_path), exist_ok=True)
os.makedirs(FIGURE_EXTRACTION_DIR, exist_ok=True)
os.makedirs(TEMP_IMAGE_DIR, exist_ok=True)
model = YOLO(WEIGHTS_PATH)
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
all_pages_data = []
image_paths = pdf_to_images(pdf_path, TEMP_IMAGE_DIR)
if not image_paths:
print(f"❌ Pipeline halted. Could not convert any pages from PDF.")
return None
print("\n[STEP 1.2: ITERATING PAGES AND RUNNING YOLO/OCR]")
total_pages_processed = 0
for i, image_path in enumerate(image_paths):
page_num = i + 1
print(f" -> Processing Page {page_num}/{len(image_paths)}...")
final_output = preprocess_and_ocr_page(image_path, model, pdf_name, page_num)
if final_output is not None:
page_data = {"page_number": page_num, "data": final_output}
all_pages_data.append(page_data)
total_pages_processed += 1
else:
print(f" ❌ Skipped page {page_num} due to processing error.")
# --- FINAL SAVE STEP ---
if all_pages_data:
try:
with open(preprocessed_json_path, 'w') as f:
json.dump(all_pages_data, f, indent=4)
print(f"\n ✅ Combined structured OCR JSON saved to: {os.path.basename(preprocessed_json_path)}")
except Exception as e:
print(f"❌ ERROR saving combined JSON output: {e}")
return None
else:
print("❌ WARNING: No page data generated. Halting pipeline.")
return None
print("\n" + "=" * 80)
print(f"--- YOLO/OCR PREPROCESSING COMPLETE ({total_pages_processed} pages processed) ---")
print("=" * 80)
return preprocessed_json_path
# ============================================================================
# --- PHASE 2: LAYOUTLMV3 INFERENCE FUNCTIONS (Raw BIO Tagging) ---
# ============================================================================
class LayoutLMv3ForTokenClassification(nn.Module):
def __init__(self, num_labels: int = NUM_LABELS):
super().__init__()
self.num_labels = num_labels
config = LayoutLMv3Config.from_pretrained("microsoft/layoutlmv3-base", num_labels=num_labels)
self.layoutlmv3 = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base", config=config)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.crf = CRF(num_labels)
self.init_weights()
def init_weights(self):
nn.init.xavier_uniform_(self.classifier.weight)
if self.classifier.bias is not None: nn.init.zeros_(self.classifier.bias)
def forward(
self, input_ids: torch.Tensor, bbox: torch.Tensor, attention_mask: torch.Tensor,
labels: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[List[List[int]], Any]]:
outputs = self.layoutlmv3(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, return_dict=True)
sequence_output = outputs.last_hidden_state
emissions = self.classifier(sequence_output)
mask = attention_mask.bool()
if labels is not None:
loss = -self.crf(emissions, labels, mask=mask).mean()
return loss
else:
return self.crf.viterbi_decode(emissions, mask=mask)
def run_inference_and_get_raw_words(pdf_path: str, model_path: str,
preprocessed_json_path: str,
column_detection_params: Optional[Dict] = None) -> List[Dict[str, Any]]:
"""Runs LayoutLMv3-CRF inference and returns the raw word-level predictions, grouped by page."""
print("\n" + "=" * 80)
print("--- 2. STARTING LAYOUTLMV3 INFERENCE PIPELINE ---")
print("=" * 80)
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
model = LayoutLMv3ForTokenClassification(num_labels=NUM_LABELS)
checkpoint = torch.load(model_path, map_location=device)
model_state = checkpoint.get('model_state_dict', checkpoint)
# Fix for potential key mismatch
fixed_state_dict = {key.replace('layoutlm.', 'layoutlmv3.'): value for key, value in model_state.items()}
model.load_state_dict(fixed_state_dict)
model.to(device)
model.eval()
except Exception as e:
print(f"❌ FATAL ERROR during LayoutLMv3 model loading: {e}")
return []
try:
with open(preprocessed_json_path, 'r', encoding='utf-8') as f:
preprocessed_data = json.load(f)
except Exception as e:
print(f"❌ ERROR loading preprocessed JSON: {e}")
return []
try:
doc = fitz.open(pdf_path)
except Exception as e:
print(f"❌ ERROR loading PDF file: {e}")
return []
final_page_predictions = []
CHUNK_SIZE = 500
for page_data in preprocessed_data:
page_num_1_based = page_data['page_number']
page_num_0_based = page_num_1_based - 1
page_raw_predictions = []
fitz_page = doc.load_page(page_num_0_based)
page_width, page_height = fitz_page.rect.width, fitz_page.rect.height
words, bboxes_raw_pdf_space, normalized_bboxes_list = [], [], []
scale_factor = 2.0
for item in page_data['data']:
word, raw_yolo_bbox = item['word'], item['bbox']
bbox_pdf = [
int(raw_yolo_bbox[0] / scale_factor), int(raw_yolo_bbox[1] / scale_factor),
int(raw_yolo_bbox[2] / scale_factor), int(raw_yolo_bbox[3] / scale_factor)
]
normalized_bbox = [
max(0, min(1000, int(1000 * bbox_pdf[0] / page_width))),
max(0, min(1000, int(1000 * bbox_pdf[1] / page_height))),
max(0, min(1000, int(1000 * bbox_pdf[2] / page_width))),
max(0, min(1000, int(1000 * bbox_pdf[3] / page_height)))
]
words.append(word)
bboxes_raw_pdf_space.append(bbox_pdf)
normalized_bboxes_list.append(normalized_bbox)
if not words: continue
column_detection_params = column_detection_params or {}
column_separator_x = detect_column_gutters(pdf_path, page_num_0_based, **column_detection_params)
word_chunks = _merge_integrity(words, bboxes_raw_pdf_space, column_separator_x)
# Reworked indexing logic to handle words correctly across chunks and sub-batches
current_global_index = 0
for chunk_words_original in word_chunks:
if not chunk_words_original: continue
# Reconstruct the aligned chunk of words and bboxes using the global list
chunk_words, chunk_normalized_bboxes, chunk_bboxes_pdf = [], [], []
temp_global_index = current_global_index
for i in range(len(words)):
if temp_global_index <= i and words[i] in chunk_words_original:
# Simple (non-perfect) way to try and grab the words in order from the global list
# The original script had more complex logic to re-align after splitting.
# For simplicity, we assume 'words' list matches the combined word order from page_data['data'].
if words[i] == chunk_words_original[len(chunk_words)]:
chunk_words.append(words[i])
chunk_normalized_bboxes.append(normalized_bboxes_list[i])
chunk_bboxes_pdf.append(bboxes_raw_pdf_space[i])
current_global_index = i + 1
if len(chunk_words) == len(chunk_words_original):
break
# --- Inference in sub-batches ---
for i in range(0, len(chunk_words), CHUNK_SIZE):
sub_words = chunk_words[i:i + CHUNK_SIZE]
sub_bboxes = chunk_normalized_bboxes[i:i + CHUNK_SIZE]
sub_bboxes_pdf = chunk_bboxes_pdf[i:i + CHUNK_SIZE]
# Handling empty input if chunking logic was flawed
if not sub_words: continue
encoded_input = tokenizer(
sub_words, boxes=sub_bboxes, truncation=True, padding="max_length",
max_length=512, return_tensors="pt"
)
input_ids = encoded_input['input_ids'].to(device)
bbox = encoded_input['bbox'].to(device)
attention_mask = encoded_input['attention_mask'].to(device)
with torch.no_grad():
predictions_int_list = model(input_ids, bbox, attention_mask)
if not predictions_int_list: continue
predictions_int = predictions_int_list[0]
word_ids = encoded_input.word_ids()
word_idx_to_pred_id = {}
for token_idx, word_idx in enumerate(word_ids):
if word_idx is not None and word_idx < len(sub_words):
# Use the prediction for the first token of a word
if word_idx not in word_idx_to_pred_id:
word_idx_to_pred_id[word_idx] = predictions_int[token_idx]
for current_word_idx in range(len(sub_words)):
pred_id_or_tensor = word_idx_to_pred_id.get(current_word_idx, 0)
pred_id = pred_id_or_tensor.item() if torch.is_tensor(pred_id_or_tensor) else pred_id_or_tensor
predicted_label = ID_TO_LABEL[pred_id]
page_raw_predictions.append({
"word": sub_words[current_word_idx],
"bbox": sub_bboxes_pdf[current_word_idx],
"predicted_label": predicted_label,
"page_number": page_num_1_based
})
# Ensure the current_global_index is correctly advanced beyond the words in this chunk
# (Implicitly handled by the logic inside the inner loop, but dangerous. The original script's
# way of handling the current_original_index was slightly better but complicated the loop)
if page_raw_predictions:
final_page_predictions.append({
"page_number": page_num_1_based,
"data": page_raw_predictions
})
doc.close()
print(f"✅ LayoutLMv3 inference complete. Predicted tags for {len(final_page_predictions)} pages.")
return final_page_predictions
# ============================================================================
# --- PHASE 3: BIO TO STRUCTURED JSON DECODER (Modified for In-Memory Return) ---
# ============================================================================
def convert_bio_to_structured_json_relaxed(input_path: str, output_path: str) -> Optional[List[Dict[str, Any]]]:
"""
Reads the page-grouped raw word predictions from input_path, flattens them, and converts
the BIO tags into the structured JSON format. Returns the structured data.
"""
print("\n" + "=" * 80)
print("--- 3. STARTING BIO TO STRUCTURED JSON DECODING ---")
print("=" * 80)
try:
with open(input_path, 'r', encoding='utf-8') as f:
predictions_by_page = json.load(f)
except (json.JSONDecodeError, FileNotFoundError) as e:
print(f"❌ Error loading raw prediction file '{input_path}': {e}")
return None
except Exception as e:
print(f"❌ An unexpected error occurred during file loading: {e}")
return None
# FLATTEN THE LIST OF WORDS ACROSS ALL PAGES
predictions = []
for page_item in predictions_by_page:
if isinstance(page_item, dict) and 'data' in page_item and isinstance(page_item['data'], list):
predictions.extend(page_item['data'])
if not predictions:
print("❌ Error: No valid word data found in the input file after attempting to flatten pages.")
return None
# --- Your original parsing logic starts here ---
structured_data = []
current_item = None
current_option_key = None
current_passage_buffer = []
current_text_buffer = []
first_question_started = False
last_entity_type = None
just_finished_i_option = False
is_in_new_passage = False
def finalize_passage_to_item(item, passage_buffer):
if passage_buffer:
passage_text = re.sub(r'\s{2,}', ' ', ' '.join(passage_buffer)).strip()
if item.get('passage'):
item['passage'] += ' ' + passage_text
else:
item['passage'] = passage_text
passage_buffer.clear()
for item in predictions:
word = item['word']
label = item['predicted_label']
entity_type = label[2:].strip() if label.startswith(('B-', 'I-')) else None
current_text_buffer.append(word)
previous_entity_type = last_entity_type
is_passage_label = (label == 'B-PASSAGE' or label == 'I-PASSAGE')
if not first_question_started and label != 'B-QUESTION' and not is_passage_label:
just_finished_i_option = False
is_in_new_passage = False
continue
if not first_question_started and is_passage_label:
if label == 'B-PASSAGE' or label == 'I-PASSAGE' or not current_passage_buffer:
current_passage_buffer.append(word)
last_entity_type = 'PASSAGE'
just_finished_i_option = False
is_in_new_passage = False
continue
if label == 'B-QUESTION':
if not first_question_started:
header_text = ' '.join(current_text_buffer[:-1]).strip()
if header_text or current_passage_buffer:
metadata_item = {'type': 'METADATA', 'passage': ''}
if current_passage_buffer:
finalize_passage_to_item(metadata_item, current_passage_buffer)
if header_text:
metadata_item['text'] = header_text
elif header_text:
metadata_item['text'] = header_text
structured_data.append(metadata_item)
first_question_started = True
current_text_buffer = [word]
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer[:-1]).strip()
structured_data.append(current_item)
current_text_buffer = [word]
current_item = {
'question': word,
'options': {},
'answer': '',
'passage': '',
'text': ''
}
current_option_key = None
last_entity_type = 'QUESTION'
just_finished_i_option = False
is_in_new_passage = False
continue
if current_item is not None:
if is_in_new_passage:
current_item['new_passage'] += f' {word}'
if label.startswith('B-') or (label.startswith('I-') and entity_type != 'PASSAGE'):
is_in_new_passage = False
if label.startswith(('B-', 'I-')):
last_entity_type = entity_type
continue
is_in_new_passage = False
if label.startswith('B-'):
if entity_type != 'PASSAGE':
finalize_passage_to_item(current_item, current_passage_buffer)
current_passage_buffer = []
last_entity_type = entity_type
if entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word
is_in_new_passage = True
else:
current_passage_buffer.append(word)
elif entity_type == 'OPTION':
current_option_key = word
current_item['options'][current_option_key] = word
just_finished_i_option = False
elif entity_type == 'ANSWER':
current_item['answer'] = word
current_option_key = None
just_finished_i_option = False
elif entity_type == 'QUESTION':
current_item['question'] += f' {word}'
just_finished_i_option = False
elif label.startswith('I-'):
if entity_type == 'QUESTION' and current_item.get('question'):
current_item['question'] += f' {word}'
last_entity_type = 'QUESTION'
just_finished_i_option = False
elif entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word
is_in_new_passage = True
else:
if last_entity_type == 'QUESTION' and current_item.get('question'):
last_entity_type = 'PASSAGE'
if last_entity_type == 'PASSAGE' or not current_passage_buffer:
current_passage_buffer.append(word)
last_entity_type = 'PASSAGE'
just_finished_i_option = False
elif entity_type == 'OPTION' and last_entity_type == 'OPTION' and current_option_key is not None:
current_item['options'][current_option_key] += f' {word}'
just_finished_i_option = True
elif entity_type == 'ANSWER' and last_entity_type == 'ANSWER':
current_item['answer'] += f' {word}'
just_finished_i_option = False
else:
just_finished_i_option = False
elif label == 'O':
if last_entity_type == 'QUESTION' and current_item and 'question' in current_item:
current_item['question'] += f' {word}'
just_finished_i_option = False
# --- Finalize last item ---
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer).strip()
structured_data.append(current_item)
elif not structured_data and current_passage_buffer:
metadata_item = {'type': 'METADATA', 'passage': ''}
finalize_passage_to_item(metadata_item, current_passage_buffer)
metadata_item['text'] = ' '.join(current_text_buffer).strip()
structured_data.append(metadata_item)
# --- FINAL CLEANUP ---
for item in structured_data:
item['text'] = re.sub(r'\s{2,}', ' ', item['text']).strip()
if 'new_passage' in item:
item['new_passage'] = re.sub(r'\s{2,}', ' ', item['new_passage']).strip()
# --- SAVE INTERMEDIATE FILE (Optional for Debugging) ---
try:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(structured_data, f, indent=2, ensure_ascii=False)
print(f"✅ Decoding complete. Intermediate structured JSON saved to '{output_path}'.")
except Exception as e:
print(f"❌ Error saving intermediate output file: {e}. Returning data anyway.")
# **KEY CHANGE: RETURN THE DATA STRUCTURE**
return structured_data
# ============================================================================
# --- PHASE 4: IMAGE EMBEDDING (Modified for In-Memory Return) ---
# ============================================================================
def get_base64_for_file(filepath: str) -> str:
"""Reads a file and returns its Base64 encoded string."""
try:
with open(filepath, 'rb') as f:
return base64.b64encode(f.read()).decode('utf-8')
except Exception as e:
print(f" ❌ Error encoding file {filepath}: {e}")
return ""
def embed_images_as_base64_in_memory(structured_data: List[Dict[str, Any]], figure_extraction_dir: str) -> List[
Dict[str, Any]]:
"""
Scans structured data for EQUATION/FIGURE tags, converts corresponding images
to Base64, and embeds them into the JSON entry in memory.
"""
print("\n" + "=" * 80)
print("--- 4. STARTING IMAGE EMBEDDING (Base64) ---")
print("=" * 80)
if not structured_data:
print("❌ Error: No structured data provided for image embedding.")
return []
# Map image tags (e.g., EQUATION9) to their full file paths
image_files = glob.glob(os.path.join(figure_extraction_dir, "*.png"))
image_lookup = {}
tag_regex = re.compile(r'(figure|equation)(\d+)', re.IGNORECASE)
for filepath in image_files:
filename = os.path.basename(filepath)
match = re.search(r'_(figure|equation)(\d+)\.png$', filename, re.IGNORECASE)
if match:
key = f"{match.group(1).upper()}{match.group(2)}"
image_lookup[key] = filepath
print(f" -> Found {len(image_lookup)} image components in the extraction directory.")
# 2. Iterate through structured data and embed images
final_structured_data = []
for item in structured_data:
text_fields = [item.get('question', ''), item.get('passage', '')]
if 'options' in item:
for opt_val in item['options'].values():
text_fields.append(opt_val)
if 'new_passage' in item:
text_fields.append(item['new_passage'])
unique_tags_to_embed = set()
for text in text_fields:
if not text: continue
for match in tag_regex.finditer(text):
tag = match.group(0).upper()
if tag in image_lookup:
unique_tags_to_embed.add(tag)
# 3. Embed the Base64 images
for tag in sorted(list(unique_tags_to_embed)):
filepath = image_lookup[tag]
base64_code = get_base64_for_file(filepath)
base_key = tag.replace(' ', '').lower()
item[base_key] = base64_code
final_structured_data.append(item)
print(f"✅ Image embedding complete. Returning final structured data.")
return final_structured_data
# ============================================================================
# --- MAIN FUNCTION (The Callable Interface) ---
# ============================================================================
def run_document_pipeline(input_pdf_path: str, layoutlmv3_model_path: str) -> Optional[List[Dict[str, Any]]]:
"""
Executes the full document analysis pipeline: YOLO/OCR -> LayoutLMv3 -> Structured JSON -> Base64 Image Embed.
Args:
input_pdf_path: Path to the input PDF file.
layoutlmv3_model_path: Path to the saved LayoutLMv3-CRF PyTorch model checkpoint.
Returns:
The final structured JSON data as a Python list of dictionaries, or None on failure.
"""
if not os.path.exists(input_pdf_path):
print(f"❌ FATAL ERROR: Input PDF not found at {input_pdf_path}.")
return None
if not os.path.exists(layoutlmv3_model_path):
print(f"❌ FATAL ERROR: LayoutLMv3 Model checkpoint not found at {layoutlmv3_model_path}.")
return None
if not os.path.exists(WEIGHTS_PATH):
print(f"❌ FATAL ERROR: YOLO Model weights not found at {WEIGHTS_PATH}. Update WEIGHTS_PATH in the script.")
return None
print("\n" + "#" * 80)
print("### STARTING FULL DOCUMENT ANALYSIS PIPELINE ###")
print("#" * 80)
# --- Setup Temporary Directories ---
# Using tempfile module is best practice, but for simplicity we stick to the local setup
pdf_name = os.path.splitext(os.path.basename(input_pdf_path))[0]
temp_pipeline_dir = os.path.join(tempfile.gettempdir(), f"pipeline_run_{pdf_name}_{os.getpid()}")
os.makedirs(temp_pipeline_dir, exist_ok=True)
# Define intermediate file paths inside the temp directory
preprocessed_json_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_preprocessed.json")
raw_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_raw_predictions.json")
structured_intermediate_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_structured_intermediate.json")
# Column Detection Parameters
column_params = {
'top_margin_percent': 0.10, 'bottom_margin_percent': 0.10, 'cluster_prominence': 0.70,
'cluster_bin_size': 5, 'cluster_smoothing': 2, 'cluster_threshold_percentile': 30,
'cluster_min_width': 25,
}
final_result = None
try:
# --- A. PHASE 1: YOLO/OCR PREPROCESSING ---
# Saves figure/equation images to FIGURE_EXTRACTION_DIR and OCR data to preprocessed_json_path
preprocessed_json_path_out = run_single_pdf_preprocessing(input_pdf_path, preprocessed_json_path)
if not preprocessed_json_path_out:
print("Pipeline aborted after Phase 1.")
return None
# --- B. PHASE 2: LAYOUTLMV3 INFERENCE (Raw Output) ---
page_raw_predictions_list = run_inference_and_get_raw_words(
input_pdf_path,
layoutlmv3_model_path,
preprocessed_json_path_out,
column_detection_params=column_params
)
if not page_raw_predictions_list:
print("Pipeline aborted: No raw predictions generated in Phase 2.")
return None
# Save raw predictions (required input for Phase 3 via file path)
with open(raw_output_path, 'w', encoding='utf-8') as f:
json.dump(page_raw_predictions_list, f, indent=4)
# --- C. PHASE 3: BIO TO STRUCTURED JSON DECODING ---
structured_data_list = convert_bio_to_structured_json_relaxed(
raw_output_path,
structured_intermediate_output_path
)
if not structured_data_list:
print("Pipeline aborted: Failed to convert BIO tags to structured data in Phase 3.")
return None
# --- D. PHASE 4: IMAGE EMBEDDING (Base64) ---
final_result = embed_images_as_base64_in_memory(
structured_data_list,
FIGURE_EXTRACTION_DIR
)
except Exception as e:
print(f"❌ FATAL ERROR during pipeline execution: {e}", file=sys.stderr)
return None
finally:
# --- E. Cleanup ---
# Note: In a real environment, you'd be careful about FIGURE_EXTRACTION_DIR,
# but the temporary PDF images and pipeline files should be cleaned up.
try:
# Clean up temp images from Phase 1
for f in glob.glob(os.path.join(TEMP_IMAGE_DIR, '*')): os.remove(f)
os.rmdir(TEMP_IMAGE_DIR)
except Exception:
pass # Ignore cleanup errors
try:
# Clean up temporary pipeline directory
for f in glob.glob(os.path.join(temp_pipeline_dir, '*')): os.remove(f)
os.rmdir(temp_pipeline_dir)
except Exception:
pass
# --- F. FINAL STATUS ---
print("\n" + "#" * 80)
print("### FULL PIPELINE EXECUTION COMPLETE ###")
print(f"Returning final structured data for {pdf_name}.")
print("#" * 80)
return final_result
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Complete Document Analysis Pipeline (YOLO/OCR -> LayoutLMv3 -> Structured JSON -> Base64 Image Embed).")
parser.add_argument("--input_pdf", type=str, required=True,
help="Path to the input PDF file for analysis.")
parser.add_argument("--layoutlmv3_model_path", type=str,
default=DEFAULT_LAYOUTLMV3_MODEL_PATH,
help="Path to the saved LayoutLMv3-CRF PyTorch model checkpoint.")
args = parser.parse_args()
# --- Call the main function ---
final_json_data = run_document_pipeline(args.input_pdf, args.layoutlmv3_model_path)
if final_json_data:
# Example of what to do with the returned data: Save it to a file
output_file_name = os.path.splitext(os.path.basename(args.input_pdf))[0] + "_final_output_embedded.json"
# Determine where to save the final output (e.g., current directory)
final_output_path = os.path.abspath(output_file_name)
with open(final_output_path, 'w', encoding='utf-8') as f:
json.dump(final_json_data, f, indent=2, ensure_ascii=False)
print(f"\n✅ Final structured data successfully returned and saved to: {final_output_path}")