Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,599 @@
|
|
| 1 |
|
| 2 |
-
import base64
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import fitz # PyMuPDF
|
| 12 |
import numpy as np
|
| 13 |
import cv2
|
| 14 |
import torch
|
| 15 |
import torch.serialization
|
| 16 |
import os
|
| 17 |
-
import time
|
| 18 |
-
from typing import Optional, Tuple, List, Dict, Any
|
| 19 |
from ultralytics import YOLO
|
| 20 |
import logging
|
| 21 |
import gradio as gr
|
|
@@ -40,29 +618,23 @@ logging.basicConfig(level=logging.WARNING)
|
|
| 40 |
# --- CONFIGURATION AND CONSTANTS ---
|
| 41 |
# ============================================================================
|
| 42 |
|
| 43 |
-
WEIGHTS_PATH = 'best.pt'
|
| 44 |
-
SCALE_FACTOR = 2.0
|
| 45 |
-
# OUTPUT_DIR = "yolo_extracted_regions"
|
| 46 |
-
# OUTPUT_DIR = os.path.join(tempfile.gettempdir(), "yolo_extracted_regions")
|
| 47 |
|
|
|
|
| 48 |
from transformers import TrOCRProcessor
|
| 49 |
from optimum.onnxruntime import ORTModelForVision2Seq
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
MODEL_NAME = 'breezedeus/pix2text-mfr-1.5'
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
# Detection parameters
|
| 68 |
CONF_THRESHOLD = 0.2
|
|
@@ -70,12 +642,13 @@ TARGET_CLASSES = ['figure', 'equation']
|
|
| 70 |
IOU_MERGE_THRESHOLD = 0.4
|
| 71 |
IOA_SUPPRESSION_THRESHOLD = 0.7
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
GLOBAL_FIGURE_COUNT = 0
|
| 75 |
-
GLOBAL_EQUATION_COUNT = 0
|
|
|
|
| 76 |
|
| 77 |
# ============================================================================
|
| 78 |
-
# --- BOX COMBINATION LOGIC (Retained
|
| 79 |
# ============================================================================
|
| 80 |
|
| 81 |
def calculate_iou(box1, box2):
|
|
@@ -136,7 +709,7 @@ def merge_overlapping_boxes(detections, iou_threshold):
|
|
| 136 |
merged_x1 = min(merged_x1, other_box[0])
|
| 137 |
merged_y1 = min(merged_y1, other_box[1])
|
| 138 |
merged_x2 = max(merged_x2, other_box[2])
|
| 139 |
-
merged_y2 = max(
|
| 140 |
is_merged[j] = True
|
| 141 |
merged_detections.append({
|
| 142 |
'coords': (merged_x1, merged_y1, merged_x2, merged_y2),
|
|
@@ -160,18 +733,46 @@ def pixmap_to_numpy(pix: fitz.Pixmap) -> np.ndarray:
|
|
| 160 |
return img
|
| 161 |
|
| 162 |
|
|
|
|
|
|
|
|
|
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
|
| 169 |
-
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
|
| 170 |
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
page_equations = 0
|
| 173 |
page_figures = 0
|
| 174 |
detected_items = []
|
|
|
|
| 175 |
|
| 176 |
try:
|
| 177 |
results = model.predict(image, conf=CONF_THRESHOLD, verbose=False)
|
|
@@ -189,7 +790,7 @@ def run_yolo_detection_and_count(
|
|
| 189 |
})
|
| 190 |
except Exception as e:
|
| 191 |
logging.error(f"YOLO inference failed on page {page_num}: {e}")
|
| 192 |
-
return 0, 0, []
|
| 193 |
|
| 194 |
merged_detections = merge_overlapping_boxes(yolo_detections, IOU_MERGE_THRESHOLD)
|
| 195 |
final_detections = filter_nested_boxes(merged_detections, IOA_SUPPRESSION_THRESHOLD)
|
|
@@ -198,31 +799,34 @@ def run_yolo_detection_and_count(
|
|
| 198 |
bbox = det["coords"]
|
| 199 |
|
| 200 |
if det["class"] == "equation":
|
| 201 |
-
|
| 202 |
page_equations += 1
|
| 203 |
|
| 204 |
b64 = crop_and_convert_to_base64(image, bbox)
|
| 205 |
detected_items.append({
|
| 206 |
"type": "equation",
|
| 207 |
-
"id": f"EQUATION{
|
| 208 |
"base64": b64
|
| 209 |
})
|
| 210 |
|
| 211 |
elif det["class"] == "figure":
|
| 212 |
-
|
| 213 |
page_figures += 1
|
| 214 |
|
| 215 |
b64 = crop_and_convert_to_base64(image, bbox)
|
| 216 |
detected_items.append({
|
| 217 |
"type": "figure",
|
| 218 |
-
"id": f"FIGURE{
|
| 219 |
"base64": b64
|
| 220 |
})
|
| 221 |
|
| 222 |
logging.warning(f" -> Page {page_num}: EQs={page_equations}, Figs={page_figures}")
|
| 223 |
-
|
|
|
|
| 224 |
|
| 225 |
|
|
|
|
|
|
|
| 226 |
|
| 227 |
def get_latex_from_base64(base64_string: str) -> str:
|
| 228 |
if ort_model is None or processor is None:
|
|
@@ -248,44 +852,6 @@ def get_latex_from_base64(base64_string: str) -> str:
|
|
| 248 |
return f"[TR_OCR_ERROR: {e}]"
|
| 249 |
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
def extract_images_from_page_in_memory(page) -> Dict[str, str]:
|
| 266 |
-
"""
|
| 267 |
-
Extract images from a page and return:
|
| 268 |
-
{ "EQUATION1": base64_string, "FIGURE1": base64_string }
|
| 269 |
-
"""
|
| 270 |
-
image_map = {}
|
| 271 |
-
image_list = page.get_images(full=True)
|
| 272 |
-
|
| 273 |
-
for idx, img in enumerate(image_list, start=1):
|
| 274 |
-
xref = img[0]
|
| 275 |
-
base = page.parent.extract_image(xref)
|
| 276 |
-
image_bytes = base["image"]
|
| 277 |
-
|
| 278 |
-
base64_img = base64.b64encode(image_bytes).decode("utf-8")
|
| 279 |
-
|
| 280 |
-
# Convention: first image = FIGURE1, second image = EQUATION1 etc
|
| 281 |
-
# You can tune this if needed
|
| 282 |
-
image_map[f"FIGURE{idx}"] = base64_img
|
| 283 |
-
|
| 284 |
-
return image_map
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
def embed_images_as_base64_in_memory(structured_data, detected_items):
|
| 290 |
tag_regex = re.compile(r'(figure|equation)(\d+)', re.IGNORECASE)
|
| 291 |
|
|
@@ -326,78 +892,40 @@ def embed_images_as_base64_in_memory(structured_data, detected_items):
|
|
| 326 |
final_data.append(item)
|
| 327 |
|
| 328 |
return final_data
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
def crop_and_convert_to_base64(image: np.ndarray, bbox: Tuple[float, float, float, float]) -> str:
|
| 336 |
-
x1, y1, x2, y2 = map(int, bbox)
|
| 337 |
-
h, w, _ = image.shape
|
| 338 |
-
|
| 339 |
-
x1 = max(0, x1)
|
| 340 |
-
y1 = max(0, y1)
|
| 341 |
-
x2 = min(w, x2)
|
| 342 |
-
y2 = min(h, y2)
|
| 343 |
-
|
| 344 |
-
crop = image[y1:y2, x1:x2]
|
| 345 |
-
_, buffer = cv2.imencode(".png", crop)
|
| 346 |
-
|
| 347 |
-
return base64.b64encode(buffer).decode("utf-8")
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
|
| 366 |
# ============================================================================
|
| 367 |
-
# --- MAIN DOCUMENT PROCESSING FUNCTION (Fixed for
|
| 368 |
# ============================================================================
|
| 369 |
|
| 370 |
-
#
|
| 371 |
-
def run_single_pdf_preprocessing(
|
|
|
|
|
|
|
| 372 |
"""
|
| 373 |
-
Runs the pipeline, returns counts, report, total time, page counts dict (str keys),
|
|
|
|
| 374 |
"""
|
| 375 |
|
| 376 |
-
|
| 377 |
-
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
|
| 378 |
start_time = time.time()
|
| 379 |
log_messages = []
|
| 380 |
-
|
| 381 |
-
|
|
|
|
| 382 |
|
| 383 |
# Dictionary to store {page_number (int): equation_count (int)}
|
| 384 |
equation_counts_per_page: Dict[int, int] = {}
|
| 385 |
|
| 386 |
-
#
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
# if os.path.exists(OUTPUT_DIR):
|
| 393 |
-
# shutil.rmtree(OUTPUT_DIR)
|
| 394 |
-
# os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 395 |
|
| 396 |
|
| 397 |
# 1. Validation and Model Loading
|
| 398 |
t0 = time.time()
|
| 399 |
if not os.path.exists(pdf_path):
|
| 400 |
report = f"❌ FATAL ERROR: Input PDF not found at {pdf_path}."
|
|
|
|
| 401 |
return 0, 0, 0, report, time.time() - start_time, {}, []
|
| 402 |
|
| 403 |
try:
|
|
@@ -442,10 +970,26 @@ def run_single_pdf_preprocessing(pdf_path: str) -> Tuple[int, int, int, str, flo
|
|
| 442 |
|
| 443 |
# Core Detection
|
| 444 |
detect_start = time.time()
|
| 445 |
-
#
|
| 446 |
-
|
| 447 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
detect_time = time.time() - detect_start
|
| 450 |
|
| 451 |
# Store the count in the dictionary (INT keys)
|
|
@@ -459,7 +1003,7 @@ def run_single_pdf_preprocessing(pdf_path: str) -> Tuple[int, int, int, str, flo
|
|
| 459 |
detection_loop_time = t5 - t4
|
| 460 |
log_messages.append(f"Total Detection Loop Time ({total_pages} pages): {detection_loop_time:.4f}s")
|
| 461 |
|
| 462 |
-
#
|
| 463 |
equation_counts_per_page_str_keys: Dict[str, int] = {
|
| 464 |
str(k): v for k, v in equation_counts_per_page.items()
|
| 465 |
}
|
|
@@ -470,8 +1014,8 @@ def run_single_pdf_preprocessing(pdf_path: str) -> Tuple[int, int, int, str, flo
|
|
| 470 |
report = (
|
| 471 |
f"✅ **YOLO Counting Complete!**\n\n"
|
| 472 |
f"**1) Total Pages Detected in PDF:** **{total_pages}**\n"
|
| 473 |
-
f"**2) Total Equations Detected:** **{
|
| 474 |
-
f"**3) Total Figures Detected:** **{
|
| 475 |
f"---\n"
|
| 476 |
f"**4) Total Execution Time:** **{total_execution_time:.4f}s**\n"
|
| 477 |
f"### Detailed Step Timing\n"
|
|
@@ -480,45 +1024,46 @@ def run_single_pdf_preprocessing(pdf_path: str) -> Tuple[int, int, int, str, flo
|
|
| 480 |
f"\n```"
|
| 481 |
)
|
| 482 |
|
| 483 |
-
# Return the dictionary with string keys
|
| 484 |
-
|
| 485 |
-
return total_pages, GLOBAL_EQUATION_COUNT, GLOBAL_FIGURE_COUNT, report, total_execution_time, equation_counts_per_page_str_keys, all_saved_images
|
| 486 |
-
|
| 487 |
|
| 488 |
|
| 489 |
# ============================================================================
|
| 490 |
# --- GRADIO INTERFACE FUNCTION (Updated) ---
|
| 491 |
# ============================================================================
|
| 492 |
|
| 493 |
-
|
|
|
|
| 494 |
"""
|
| 495 |
Gradio wrapper function to handle file upload and return results.
|
| 496 |
"""
|
| 497 |
if pdf_file is None:
|
| 498 |
-
# Return
|
| 499 |
return "N/A", "N/A", "N/A", "Please upload a PDF file.", {}, []
|
| 500 |
|
| 501 |
pdf_path = pdf_file.name
|
| 502 |
|
| 503 |
try:
|
| 504 |
# Unpack the new return value: equation_counts_per_page (with string keys)
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
|
| 513 |
# Return results (6 items now)
|
| 514 |
-
|
| 515 |
-
return str(num_pages), str(num_equations), str(num_figures), report, equation_counts_per_page, images
|
| 516 |
|
| 517 |
|
| 518 |
except Exception as e:
|
| 519 |
error_msg = f"An unexpected error occurred: {e}"
|
| 520 |
logging.error(error_msg, exc_info=True)
|
| 521 |
-
# Return
|
| 522 |
return "Error", "Error", "Error", error_msg, {}, []
|
| 523 |
|
| 524 |
|
|
@@ -542,9 +1087,9 @@ if __name__ == "__main__":
|
|
| 542 |
# NEW OUTPUT: JSON component for structured data
|
| 543 |
output_page_counts = gr.JSON(label="Equation Count Per Page (Dictionary)")
|
| 544 |
|
| 545 |
-
# Gradio Gallery is retained
|
| 546 |
output_gallery = gr.Gallery(
|
| 547 |
-
label="Detected
|
| 548 |
columns=5,
|
| 549 |
height="auto",
|
| 550 |
object_fit="contain",
|
|
@@ -554,7 +1099,7 @@ if __name__ == "__main__":
|
|
| 554 |
interface = gr.Interface(
|
| 555 |
fn=gradio_process_pdf,
|
| 556 |
inputs=input_file,
|
| 557 |
-
# Outputs list remains the same, but the
|
| 558 |
outputs=[
|
| 559 |
output_pages,
|
| 560 |
output_equations,
|
|
@@ -563,18 +1108,11 @@ if __name__ == "__main__":
|
|
| 563 |
output_page_counts,
|
| 564 |
output_gallery
|
| 565 |
],
|
| 566 |
-
title="📊 YOLO Counting with Per-Page Data & Timing",
|
| 567 |
description=(
|
| 568 |
-
"Upload a PDF to run YOLO detection. The
|
| 569 |
-
"equation counts per page (in JSON format), and detailed timing."
|
| 570 |
),
|
| 571 |
)
|
| 572 |
|
| 573 |
print("\nStarting Gradio application...")
|
| 574 |
-
|
| 575 |
-
interface.launch(
|
| 576 |
-
inbrowser=True,
|
| 577 |
-
# allowed_paths=[OUTPUT_DIR]
|
| 578 |
-
)
|
| 579 |
-
|
| 580 |
-
|
|
|
|
| 1 |
|
| 2 |
+
# import base64
|
| 3 |
+
# from PIL import Image
|
| 4 |
+
# import re
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# import fitz # PyMuPDF
|
| 12 |
+
# import numpy as np
|
| 13 |
+
# import cv2
|
| 14 |
+
# import torch
|
| 15 |
+
# import torch.serialization
|
| 16 |
+
# import os
|
| 17 |
+
# import time
|
| 18 |
+
# from typing import Optional, Tuple, List, Dict, Any
|
| 19 |
+
# from ultralytics import YOLO
|
| 20 |
+
# import logging
|
| 21 |
+
# import gradio as gr
|
| 22 |
+
# import shutil
|
| 23 |
+
# import tempfile
|
| 24 |
+
# import io
|
| 25 |
+
|
| 26 |
+
# # ============================================================================
|
| 27 |
+
# # --- Global Patches and Setup ---
|
| 28 |
+
# # ============================================================================
|
| 29 |
+
|
| 30 |
+
# # Patch torch.load to prevent weights_only error with older models
|
| 31 |
+
# _original_torch_load = torch.load
|
| 32 |
+
# def patched_torch_load(*args, **kwargs):
|
| 33 |
+
# kwargs["weights_only"] = False
|
| 34 |
+
# return _original_torch_load(*args, **kwargs)
|
| 35 |
+
# torch.load = patched_torch_load
|
| 36 |
+
|
| 37 |
+
# logging.basicConfig(level=logging.WARNING)
|
| 38 |
+
|
| 39 |
+
# # ============================================================================
|
| 40 |
+
# # --- CONFIGURATION AND CONSTANTS ---
|
| 41 |
+
# # ============================================================================
|
| 42 |
+
|
| 43 |
+
# WEIGHTS_PATH = 'best.pt'
|
| 44 |
+
# SCALE_FACTOR = 2.0
|
| 45 |
+
# # OUTPUT_DIR = "yolo_extracted_regions"
|
| 46 |
+
# # OUTPUT_DIR = os.path.join(tempfile.gettempdir(), "yolo_extracted_regions")
|
| 47 |
+
|
| 48 |
+
# from transformers import TrOCRProcessor
|
| 49 |
+
# from optimum.onnxruntime import ORTModelForVision2Seq
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# MODEL_NAME = 'breezedeus/pix2text-mfr-1.5'
|
| 54 |
+
# processor = TrOCRProcessor.from_pretrained(MODEL_NAME)
|
| 55 |
+
# ort_model = ORTModelForVision2Seq.from_pretrained(MODEL_NAME, use_cache=False)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# # Detection parameters
|
| 68 |
+
# CONF_THRESHOLD = 0.2
|
| 69 |
+
# TARGET_CLASSES = ['figure', 'equation']
|
| 70 |
+
# IOU_MERGE_THRESHOLD = 0.4
|
| 71 |
+
# IOA_SUPPRESSION_THRESHOLD = 0.7
|
| 72 |
+
|
| 73 |
+
# # Global counters (Reset per run)
|
| 74 |
+
# GLOBAL_FIGURE_COUNT = 0
|
| 75 |
+
# GLOBAL_EQUATION_COUNT = 0
|
| 76 |
+
|
| 77 |
+
# # ============================================================================
|
| 78 |
+
# # --- BOX COMBINATION LOGIC (Retained for detection accuracy) ---
|
| 79 |
+
# # ============================================================================
|
| 80 |
+
|
| 81 |
+
# def calculate_iou(box1, box2):
|
| 82 |
+
# x1_a, y1_a, x2_a, y2_a = box1
|
| 83 |
+
# x1_b, y1_b, x2_b, y2_b = box2
|
| 84 |
+
# x_left = max(x1_a, x1_b)
|
| 85 |
+
# y_top = max(y1_a, y1_b)
|
| 86 |
+
# x_right = min(x2_a, x2_b)
|
| 87 |
+
# y_bottom = min(y2_a, y2_b)
|
| 88 |
+
# intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
|
| 89 |
+
# box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
|
| 90 |
+
# box_b_area = (x2_b - x1_b) * (y2_b - y1_b)
|
| 91 |
+
# union_area = float(box_a_area + box_b_area - intersection_area)
|
| 92 |
+
# return intersection_area / union_area if union_area > 0 else 0
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# def filter_nested_boxes(detections, ioa_threshold=0.80):
|
| 96 |
+
# if not detections: return []
|
| 97 |
+
# for d in detections:
|
| 98 |
+
# x1, y1, x2, y2 = d['coords']
|
| 99 |
+
# d['area'] = (x2 - x1) * (y2 - y1)
|
| 100 |
+
# detections.sort(key=lambda x: x['area'], reverse=True)
|
| 101 |
+
# keep_indices = []
|
| 102 |
+
# is_suppressed = [False] * len(detections)
|
| 103 |
+
# for i in range(len(detections)):
|
| 104 |
+
# if is_suppressed[i]: continue
|
| 105 |
+
# keep_indices.append(i)
|
| 106 |
+
# box_a = detections[i]['coords']
|
| 107 |
+
# for j in range(i + 1, len(detections)):
|
| 108 |
+
# if is_suppressed[j]: continue
|
| 109 |
+
# box_b = detections[j]['coords']
|
| 110 |
+
# x_left = max(box_a[0], box_b[0])
|
| 111 |
+
# y_top = max(box_a[1], box_b[1])
|
| 112 |
+
# x_right = min(box_a[2], box_b[2])
|
| 113 |
+
# y_bottom = min(box_a[3], box_b[3])
|
| 114 |
+
# intersection = max(0, x_right - x_left) * max(0, y_bottom - y_top)
|
| 115 |
+
# area_b = detections[j]['area']
|
| 116 |
+
# if area_b > 0 and intersection / area_b > ioa_threshold:
|
| 117 |
+
# is_suppressed[j] = True
|
| 118 |
+
# return [detections[i] for i in keep_indices]
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# def merge_overlapping_boxes(detections, iou_threshold):
|
| 122 |
+
# if not detections: return []
|
| 123 |
+
# detections.sort(key=lambda d: d['conf'], reverse=True)
|
| 124 |
+
# merged_detections = []
|
| 125 |
+
# is_merged = [False] * len(detections)
|
| 126 |
+
# for i in range(len(detections)):
|
| 127 |
+
# if is_merged[i]: continue
|
| 128 |
+
# current_box = detections[i]['coords']
|
| 129 |
+
# current_class = detections[i]['class']
|
| 130 |
+
# merged_x1, merged_y1, merged_x2, merged_y2 = current_box
|
| 131 |
+
# for j in range(i + 1, len(detections)):
|
| 132 |
+
# if is_merged[j] or detections[j]['class'] != current_class: continue
|
| 133 |
+
# other_box = detections[j]['coords']
|
| 134 |
+
# iou = calculate_iou(current_box, other_box)
|
| 135 |
+
# if iou > iou_threshold:
|
| 136 |
+
# merged_x1 = min(merged_x1, other_box[0])
|
| 137 |
+
# merged_y1 = min(merged_y1, other_box[1])
|
| 138 |
+
# merged_x2 = max(merged_x2, other_box[2])
|
| 139 |
+
# merged_y2 = max(merged_y2, other_box[3])
|
| 140 |
+
# is_merged[j] = True
|
| 141 |
+
# merged_detections.append({
|
| 142 |
+
# 'coords': (merged_x1, merged_y1, merged_x2, merged_y2),
|
| 143 |
+
# 'y1': merged_y1, 'class': current_class, 'conf': detections[i]['conf']
|
| 144 |
+
# })
|
| 145 |
+
# return merged_detections
|
| 146 |
+
|
| 147 |
+
# # ============================================================================
|
| 148 |
+
# # --- UTILITY FUNCTIONS ---
|
| 149 |
+
# # ============================================================================
|
| 150 |
+
|
| 151 |
+
# def pixmap_to_numpy(pix: fitz.Pixmap) -> np.ndarray:
|
| 152 |
+
# """Converts a PyMuPDF Pixmap to a NumPy array for OpenCV/YOLO."""
|
| 153 |
+
# img = np.frombuffer(pix.samples, dtype=np.uint8).reshape(
|
| 154 |
+
# (pix.h, pix.w, pix.n)
|
| 155 |
+
# )
|
| 156 |
+
# if pix.n == 4:
|
| 157 |
+
# img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
|
| 158 |
+
# elif pix.n == 1:
|
| 159 |
+
# img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
| 160 |
+
# return img
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# def run_yolo_detection_and_count(
|
| 166 |
+
# image: np.ndarray, model: YOLO, page_num: int
|
| 167 |
+
# ) -> Tuple[int, int, List[Dict[str, str]]]:
|
| 168 |
+
|
| 169 |
+
# global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
|
| 170 |
+
|
| 171 |
+
# yolo_detections = []
|
| 172 |
+
# page_equations = 0
|
| 173 |
+
# page_figures = 0
|
| 174 |
+
# detected_items = []
|
| 175 |
+
|
| 176 |
+
# try:
|
| 177 |
+
# results = model.predict(image, conf=CONF_THRESHOLD, verbose=False)
|
| 178 |
+
|
| 179 |
+
# if results and results[0].boxes:
|
| 180 |
+
# for box in results[0].boxes.data.tolist():
|
| 181 |
+
# x1, y1, x2, y2, conf, cls_id = box
|
| 182 |
+
# cls_name = model.names[int(cls_id)]
|
| 183 |
+
|
| 184 |
+
# if cls_name in TARGET_CLASSES:
|
| 185 |
+
# yolo_detections.append({
|
| 186 |
+
# 'coords': (x1, y1, x2, y2),
|
| 187 |
+
# 'class': cls_name,
|
| 188 |
+
# 'conf': conf
|
| 189 |
+
# })
|
| 190 |
+
# except Exception as e:
|
| 191 |
+
# logging.error(f"YOLO inference failed on page {page_num}: {e}")
|
| 192 |
+
# return 0, 0, []
|
| 193 |
+
|
| 194 |
+
# merged_detections = merge_overlapping_boxes(yolo_detections, IOU_MERGE_THRESHOLD)
|
| 195 |
+
# final_detections = filter_nested_boxes(merged_detections, IOA_SUPPRESSION_THRESHOLD)
|
| 196 |
+
|
| 197 |
+
# for det in final_detections:
|
| 198 |
+
# bbox = det["coords"]
|
| 199 |
+
|
| 200 |
+
# if det["class"] == "equation":
|
| 201 |
+
# GLOBAL_EQUATION_COUNT += 1
|
| 202 |
+
# page_equations += 1
|
| 203 |
+
|
| 204 |
+
# b64 = crop_and_convert_to_base64(image, bbox)
|
| 205 |
+
# detected_items.append({
|
| 206 |
+
# "type": "equation",
|
| 207 |
+
# "id": f"EQUATION{GLOBAL_EQUATION_COUNT}",
|
| 208 |
+
# "base64": b64
|
| 209 |
+
# })
|
| 210 |
+
|
| 211 |
+
# elif det["class"] == "figure":
|
| 212 |
+
# GLOBAL_FIGURE_COUNT += 1
|
| 213 |
+
# page_figures += 1
|
| 214 |
+
|
| 215 |
+
# b64 = crop_and_convert_to_base64(image, bbox)
|
| 216 |
+
# detected_items.append({
|
| 217 |
+
# "type": "figure",
|
| 218 |
+
# "id": f"FIGURE{GLOBAL_FIGURE_COUNT}",
|
| 219 |
+
# "base64": b64
|
| 220 |
+
# })
|
| 221 |
+
|
| 222 |
+
# logging.warning(f" -> Page {page_num}: EQs={page_equations}, Figs={page_figures}")
|
| 223 |
+
# return page_equations, page_figures, detected_items
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# def get_latex_from_base64(base64_string: str) -> str:
|
| 228 |
+
# if ort_model is None or processor is None:
|
| 229 |
+
# return "[MODEL_ERROR: Model not initialized]"
|
| 230 |
+
|
| 231 |
+
# try:
|
| 232 |
+
# image_data = base64.b64decode(base64_string)
|
| 233 |
+
# image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
| 234 |
+
|
| 235 |
+
# pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
| 236 |
+
# generated_ids = ort_model.generate(pixel_values)
|
| 237 |
+
# raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 238 |
+
|
| 239 |
+
# if not raw_text:
|
| 240 |
+
# return "[OCR_WARNING: No formula found]"
|
| 241 |
+
|
| 242 |
+
# latex = raw_text[0]
|
| 243 |
+
# latex = re.sub(r'[\r\n]+', '', latex)
|
| 244 |
+
|
| 245 |
+
# return latex
|
| 246 |
+
|
| 247 |
+
# except Exception as e:
|
| 248 |
+
# return f"[TR_OCR_ERROR: {e}]"
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
# def extract_images_from_page_in_memory(page) -> Dict[str, str]:
|
| 266 |
+
# """
|
| 267 |
+
# Extract images from a page and return:
|
| 268 |
+
# { "EQUATION1": base64_string, "FIGURE1": base64_string }
|
| 269 |
+
# """
|
| 270 |
+
# image_map = {}
|
| 271 |
+
# image_list = page.get_images(full=True)
|
| 272 |
+
|
| 273 |
+
# for idx, img in enumerate(image_list, start=1):
|
| 274 |
+
# xref = img[0]
|
| 275 |
+
# base = page.parent.extract_image(xref)
|
| 276 |
+
# image_bytes = base["image"]
|
| 277 |
+
|
| 278 |
+
# base64_img = base64.b64encode(image_bytes).decode("utf-8")
|
| 279 |
+
|
| 280 |
+
# # Convention: first image = FIGURE1, second image = EQUATION1 etc
|
| 281 |
+
# # You can tune this if needed
|
| 282 |
+
# image_map[f"FIGURE{idx}"] = base64_img
|
| 283 |
+
|
| 284 |
+
# return image_map
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
# def embed_images_as_base64_in_memory(structured_data, detected_items):
|
| 290 |
+
# tag_regex = re.compile(r'(figure|equation)(\d+)', re.IGNORECASE)
|
| 291 |
|
| 292 |
+
# item_lookup = {d["id"]: d for d in detected_items}
|
| 293 |
+
# final_data = []
|
| 294 |
|
| 295 |
+
# for item in structured_data:
|
| 296 |
+
# text_fields = [
|
| 297 |
+
# item.get('question', ''),
|
| 298 |
+
# item.get('passage', ''),
|
| 299 |
+
# item.get('new_passage', '')
|
| 300 |
+
# ]
|
| 301 |
|
| 302 |
+
# if 'options' in item:
|
| 303 |
+
# text_fields.extend(item['options'].values())
|
| 304 |
|
| 305 |
+
# used_tags = set()
|
| 306 |
+
|
| 307 |
+
# for text in text_fields:
|
| 308 |
+
# for m in tag_regex.finditer(text or ""):
|
| 309 |
+
# used_tags.add(m.group(0).upper())
|
| 310 |
+
|
| 311 |
+
# for tag in used_tags:
|
| 312 |
+
# base_key = tag.lower().replace(" ", "")
|
| 313 |
+
|
| 314 |
+
# if tag not in item_lookup:
|
| 315 |
+
# item[base_key] = "[MISSING_IMAGE]"
|
| 316 |
+
# continue
|
| 317 |
+
|
| 318 |
+
# entry = item_lookup[tag]
|
| 319 |
+
|
| 320 |
+
# if entry["type"] == "equation":
|
| 321 |
+
# item[base_key] = get_latex_from_base64(entry["base64"])
|
| 322 |
+
|
| 323 |
+
# else:
|
| 324 |
+
# item[base_key] = entry["base64"]
|
| 325 |
+
|
| 326 |
+
# final_data.append(item)
|
| 327 |
+
|
| 328 |
+
# return final_data
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
# def crop_and_convert_to_base64(image: np.ndarray, bbox: Tuple[float, float, float, float]) -> str:
|
| 336 |
+
# x1, y1, x2, y2 = map(int, bbox)
|
| 337 |
+
# h, w, _ = image.shape
|
| 338 |
+
|
| 339 |
+
# x1 = max(0, x1)
|
| 340 |
+
# y1 = max(0, y1)
|
| 341 |
+
# x2 = min(w, x2)
|
| 342 |
+
# y2 = min(h, y2)
|
| 343 |
+
|
| 344 |
+
# crop = image[y1:y2, x1:x2]
|
| 345 |
+
# _, buffer = cv2.imencode(".png", crop)
|
| 346 |
+
|
| 347 |
+
# return base64.b64encode(buffer).decode("utf-8")
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
# # ============================================================================
|
| 367 |
+
# # --- MAIN DOCUMENT PROCESSING FUNCTION (Fixed for JSON serialization) ---
|
| 368 |
+
# # ============================================================================
|
| 369 |
+
|
| 370 |
+
# # NOTE: The return signature now uses Dict[str, int] for the equation counts
|
| 371 |
+
# def run_single_pdf_preprocessing(pdf_path: str) -> Tuple[int, int, int, str, float, Dict[str, int], List[str]]:
|
| 372 |
+
# """
|
| 373 |
+
# Runs the pipeline, returns counts, report, total time, page counts dict (str keys), and empty list.
|
| 374 |
+
# """
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
# global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
|
| 378 |
+
# start_time = time.time()
|
| 379 |
+
# log_messages = []
|
| 380 |
+
# all_saved_images = []
|
| 381 |
+
# all_base64_images: List[str] = []
|
| 382 |
+
|
| 383 |
+
# # Dictionary to store {page_number (int): equation_count (int)}
|
| 384 |
+
# equation_counts_per_page: Dict[int, int] = {}
|
| 385 |
+
|
| 386 |
+
# # Reset globals
|
| 387 |
+
# GLOBAL_FIGURE_COUNT = 0
|
| 388 |
+
# GLOBAL_EQUATION_COUNT = 0
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
# # if os.path.exists(OUTPUT_DIR):
|
| 393 |
+
# # shutil.rmtree(OUTPUT_DIR)
|
| 394 |
+
# # os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
# # 1. Validation and Model Loading
|
| 398 |
+
# t0 = time.time()
|
| 399 |
+
# if not os.path.exists(pdf_path):
|
| 400 |
+
# report = f"❌ FATAL ERROR: Input PDF not found at {pdf_path}."
|
| 401 |
+
# return 0, 0, 0, report, time.time() - start_time, {}, []
|
| 402 |
+
|
| 403 |
+
# try:
|
| 404 |
+
# model = YOLO(WEIGHTS_PATH)
|
| 405 |
+
# logging.warning(f"✅ Loaded YOLO model from: {WEIGHTS_PATH}")
|
| 406 |
+
# except Exception as e:
|
| 407 |
+
# report = f"❌ ERROR loading YOLO model: {e}\n(Ensure 'best.pt' is available and valid.)"
|
| 408 |
+
# return 0, 0, 0, report, time.time() - start_time, {}, []
|
| 409 |
+
# t1 = time.time()
|
| 410 |
+
# log_messages.append(f"Model Loading Time: {t1-t0:.4f}s")
|
| 411 |
+
|
| 412 |
+
# # 2. PDF Loading
|
| 413 |
+
# t2 = time.time()
|
| 414 |
+
# try:
|
| 415 |
+
# doc = fitz.open(pdf_path)
|
| 416 |
+
# total_pages = doc.page_count
|
| 417 |
+
# logging.warning(f"✅ Opened PDF with {doc.page_count} pages")
|
| 418 |
+
# except Exception as e:
|
| 419 |
+
# report = f"❌ ERROR loading PDF file: {e}"
|
| 420 |
+
# return 0, 0, 0, report, time.time() - start_time, {}, []
|
| 421 |
+
# t3 = time.time()
|
| 422 |
+
# log_messages.append(f"PDF Initialization Time: {t3-t2:.4f}s")
|
| 423 |
+
|
| 424 |
+
# mat = fitz.Matrix(SCALE_FACTOR, SCALE_FACTOR)
|
| 425 |
+
|
| 426 |
+
# # 3. Page Processing and Detection Loop
|
| 427 |
+
# t4 = time.time()
|
| 428 |
+
# for page_num_0_based in range(doc.page_count):
|
| 429 |
+
# page_start_time = time.time()
|
| 430 |
+
# fitz_page = doc.load_page(page_num_0_based)
|
| 431 |
+
# page_num = page_num_0_based + 1
|
| 432 |
+
|
| 433 |
+
# # Render page to image for YOLO
|
| 434 |
+
# try:
|
| 435 |
+
# pix_start = time.time()
|
| 436 |
+
# pix = fitz_page.get_pixmap(matrix=mat)
|
| 437 |
+
# original_img = pixmap_to_numpy(pix)
|
| 438 |
+
# pix_time = time.time() - pix_start
|
| 439 |
+
# except Exception as e:
|
| 440 |
+
# logging.error(f"Error converting page {page_num} to image: {e}. Skipping.")
|
| 441 |
+
# continue
|
| 442 |
+
|
| 443 |
+
# # Core Detection
|
| 444 |
+
# detect_start = time.time()
|
| 445 |
+
# # page_equations, _ = run_yolo_detection_and_count(original_img, model, page_num)
|
| 446 |
+
# page_equations, _, page_images = run_yolo_detection_and_count(original_img, model, page_num)
|
| 447 |
+
# all_saved_images.extend(page_images)
|
| 448 |
+
|
| 449 |
+
# detect_time = time.time() - detect_start
|
| 450 |
+
|
| 451 |
+
# # Store the count in the dictionary (INT keys)
|
| 452 |
+
# equation_counts_per_page[page_num] = page_equations
|
| 453 |
+
|
| 454 |
+
# page_total_time = time.time() - page_start_time
|
| 455 |
+
# log_messages.append(f"Page {page_num} Time: Total={page_total_time:.4f}s (Render={pix_time:.4f}s, Detect={detect_time:.4f}s)")
|
| 456 |
+
|
| 457 |
+
# doc.close()
|
| 458 |
+
# t5 = time.time()
|
| 459 |
+
# detection_loop_time = t5 - t4
|
| 460 |
+
# log_messages.append(f"Total Detection Loop Time ({total_pages} pages): {detection_loop_time:.4f}s")
|
| 461 |
+
|
| 462 |
+
# # FIX APPLIED HERE: Convert integer keys to string keys for JSON serialization
|
| 463 |
+
# equation_counts_per_page_str_keys: Dict[str, int] = {
|
| 464 |
+
# str(k): v for k, v in equation_counts_per_page.items()
|
| 465 |
+
# }
|
| 466 |
+
|
| 467 |
+
# # 4. Final Report Generation
|
| 468 |
+
# total_execution_time = t5 - start_time
|
| 469 |
+
|
| 470 |
+
# report = (
|
| 471 |
+
# f"✅ **YOLO Counting Complete!**\n\n"
|
| 472 |
+
# f"**1) Total Pages Detected in PDF:** **{total_pages}**\n"
|
| 473 |
+
# f"**2) Total Equations Detected:** **{GLOBAL_EQUATION_COUNT}**\n"
|
| 474 |
+
# f"**3) Total Figures Detected:** **{GLOBAL_FIGURE_COUNT}**\n"
|
| 475 |
+
# f"---\n"
|
| 476 |
+
# f"**4) Total Execution Time:** **{total_execution_time:.4f}s**\n"
|
| 477 |
+
# f"### Detailed Step Timing\n"
|
| 478 |
+
# f"```\n"
|
| 479 |
+
# + "\n".join(log_messages) +
|
| 480 |
+
# f"\n```"
|
| 481 |
+
# )
|
| 482 |
+
|
| 483 |
+
# # Return the dictionary with string keys
|
| 484 |
+
# # return total_pages, GLOBAL_EQUATION_COUNT, GLOBAL_FIGURE_COUNT, report, total_execution_time, equation_counts_per_page_str_keys, []
|
| 485 |
+
# return total_pages, GLOBAL_EQUATION_COUNT, GLOBAL_FIGURE_COUNT, report, total_execution_time, equation_counts_per_page_str_keys, all_saved_images
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
# # ============================================================================
|
| 490 |
+
# # --- GRADIO INTERFACE FUNCTION (Updated) ---
|
| 491 |
+
# # ============================================================================
|
| 492 |
+
|
| 493 |
+
# def gradio_process_pdf(pdf_file) -> Tuple[str, str, str, str, Dict[str, int], List[str]]:
|
| 494 |
+
# """
|
| 495 |
+
# Gradio wrapper function to handle file upload and return results.
|
| 496 |
+
# """
|
| 497 |
+
# if pdf_file is None:
|
| 498 |
+
# # Return an empty dict with string keys
|
| 499 |
+
# return "N/A", "N/A", "N/A", "Please upload a PDF file.", {}, []
|
| 500 |
+
|
| 501 |
+
# pdf_path = pdf_file.name
|
| 502 |
+
|
| 503 |
+
# try:
|
| 504 |
+
# # Unpack the new return value: equation_counts_per_page (with string keys)
|
| 505 |
+
# # num_pages, num_equations, num_figures, report, total_time, equation_counts_per_page, _ = run_single_pdf_preprocessing(
|
| 506 |
+
# # pdf_path
|
| 507 |
+
# # )
|
| 508 |
+
# # num_pages, num_equations, num_figures, report, total_time, equation_counts_per_page, images = run_single_pdf_preprocessing(pdf_path)
|
| 509 |
+
# num_pages, num_equations, num_figures, report, total_time, equation_counts_per_page, images = run_single_pdf_preprocessing(pdf_path)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
# # Return results (6 items now)
|
| 514 |
+
# # return str(num_pages), str(num_equations), str(num_figures), report, equation_counts_per_page, []
|
| 515 |
+
# return str(num_pages), str(num_equations), str(num_figures), report, equation_counts_per_page, images
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
# except Exception as e:
|
| 519 |
+
# error_msg = f"An unexpected error occurred: {e}"
|
| 520 |
+
# logging.error(error_msg, exc_info=True)
|
| 521 |
+
# # Return an empty dict on error
|
| 522 |
+
# return "Error", "Error", "Error", error_msg, {}, []
|
| 523 |
|
| 524 |
|
| 525 |
+
# # ============================================================================
|
| 526 |
+
# # --- GRADIO INTERFACE DEFINITION (Updated) ---
|
| 527 |
+
# # ============================================================================
|
| 528 |
+
|
| 529 |
+
# if __name__ == "__main__":
|
| 530 |
+
|
| 531 |
+
# if not os.path.exists(WEIGHTS_PATH):
|
| 532 |
+
# logging.error(f"❌ FATAL ERROR: YOLO weight file '{WEIGHTS_PATH}' not found. Cannot run live inference.")
|
| 533 |
+
|
| 534 |
+
# input_file = gr.File(label="Upload PDF Document", type="filepath", file_types=[".pdf"])
|
| 535 |
+
|
| 536 |
+
# # Outputs
|
| 537 |
+
# output_pages = gr.Textbox(label="Total Pages in PDF", interactive=False)
|
| 538 |
+
# output_equations = gr.Textbox(label="Total Equations Detected", interactive=False)
|
| 539 |
+
# output_figures = gr.Textbox(label="Total Figures Detected", interactive=False)
|
| 540 |
+
# output_report = gr.Markdown(label="Processing Summary and Timing")
|
| 541 |
+
|
| 542 |
+
# # NEW OUTPUT: JSON component for structured data
|
| 543 |
+
# output_page_counts = gr.JSON(label="Equation Count Per Page (Dictionary)")
|
| 544 |
+
|
| 545 |
+
# # Gradio Gallery is retained but will receive an empty list []
|
| 546 |
+
# output_gallery = gr.Gallery(
|
| 547 |
+
# label="Detected Equations (Disabled for Speed)",
|
| 548 |
+
# columns=5,
|
| 549 |
+
# height="auto",
|
| 550 |
+
# object_fit="contain",
|
| 551 |
+
# allow_preview=False
|
| 552 |
+
# )
|
| 553 |
+
|
| 554 |
+
# interface = gr.Interface(
|
| 555 |
+
# fn=gradio_process_pdf,
|
| 556 |
+
# inputs=input_file,
|
| 557 |
+
# # Outputs list remains the same, but the JSON component now receives string keys.
|
| 558 |
+
# outputs=[
|
| 559 |
+
# output_pages,
|
| 560 |
+
# output_equations,
|
| 561 |
+
# output_figures,
|
| 562 |
+
# output_report,
|
| 563 |
+
# output_page_counts,
|
| 564 |
+
# output_gallery
|
| 565 |
+
# ],
|
| 566 |
+
# title="📊 YOLO Counting with Per-Page Data & Timing",
|
| 567 |
+
# description=(
|
| 568 |
+
# "Upload a PDF to run YOLO detection. The results include total counts, a breakdown of "
|
| 569 |
+
# "equation counts per page (in JSON format), and detailed timing."
|
| 570 |
+
# ),
|
| 571 |
+
# )
|
| 572 |
+
|
| 573 |
+
# print("\nStarting Gradio application...")
|
| 574 |
+
# # interface.launch(inbrowser=True)
|
| 575 |
+
# interface.launch(
|
| 576 |
+
# inbrowser=True,
|
| 577 |
+
# # allowed_paths=[OUTPUT_DIR]
|
| 578 |
+
# )
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
import base64
|
| 587 |
+
from PIL import Image
|
| 588 |
+
import re
|
| 589 |
import fitz # PyMuPDF
|
| 590 |
import numpy as np
|
| 591 |
import cv2
|
| 592 |
import torch
|
| 593 |
import torch.serialization
|
| 594 |
import os
|
| 595 |
+
import time
|
| 596 |
+
from typing import Optional, Tuple, List, Dict, Any, Union
|
| 597 |
from ultralytics import YOLO
|
| 598 |
import logging
|
| 599 |
import gradio as gr
|
|
|
|
| 618 |
# --- CONFIGURATION AND CONSTANTS ---
|
| 619 |
# ============================================================================
|
| 620 |
|
| 621 |
+
WEIGHTS_PATH = 'best.pt'
|
| 622 |
+
SCALE_FACTOR = 2.0
|
|
|
|
|
|
|
| 623 |
|
| 624 |
+
# --- OCR Model Initialization (Retained but not used in the main loop for counting) ---
|
| 625 |
from transformers import TrOCRProcessor
|
| 626 |
from optimum.onnxruntime import ORTModelForVision2Seq
|
| 627 |
|
|
|
|
|
|
|
| 628 |
MODEL_NAME = 'breezedeus/pix2text-mfr-1.5'
|
| 629 |
+
# Note: These models are kept global but unused in the main flow,
|
| 630 |
+
# as the user did not explicitly ask to remove the heavy OCR dependency yet.
|
| 631 |
+
try:
|
| 632 |
+
processor = TrOCRProcessor.from_pretrained(MODEL_NAME)
|
| 633 |
+
ort_model = ORTModelForVision2Seq.from_pretrained(MODEL_NAME, use_cache=False)
|
| 634 |
+
except Exception as e:
|
| 635 |
+
logging.warning(f"OCR model loading failed (expected if dependencies are missing): {e}")
|
| 636 |
+
processor = None
|
| 637 |
+
ort_model = None
|
|
|
|
|
|
|
|
|
|
| 638 |
|
| 639 |
# Detection parameters
|
| 640 |
CONF_THRESHOLD = 0.2
|
|
|
|
| 642 |
IOU_MERGE_THRESHOLD = 0.4
|
| 643 |
IOA_SUPPRESSION_THRESHOLD = 0.7
|
| 644 |
|
| 645 |
+
# --- REMOVED GLOBAL COUNTERS ---
|
| 646 |
+
# GLOBAL_FIGURE_COUNT = 0
|
| 647 |
+
# GLOBAL_EQUATION_COUNT = 0
|
| 648 |
+
|
| 649 |
|
| 650 |
# ============================================================================
|
| 651 |
+
# --- BOX COMBINATION LOGIC (Retained) ---
|
| 652 |
# ============================================================================
|
| 653 |
|
| 654 |
def calculate_iou(box1, box2):
|
|
|
|
| 709 |
merged_x1 = min(merged_x1, other_box[0])
|
| 710 |
merged_y1 = min(merged_y1, other_box[1])
|
| 711 |
merged_x2 = max(merged_x2, other_box[2])
|
| 712 |
+
merged_y2 = max(other_box[3], other_box[3])
|
| 713 |
is_merged[j] = True
|
| 714 |
merged_detections.append({
|
| 715 |
'coords': (merged_x1, merged_y1, merged_x2, merged_y2),
|
|
|
|
| 733 |
return img
|
| 734 |
|
| 735 |
|
| 736 |
+
def crop_and_convert_to_base64(image: np.ndarray, bbox: Tuple[float, float, float, float]) -> str:
|
| 737 |
+
x1, y1, x2, y2 = map(int, bbox)
|
| 738 |
+
h, w, _ = image.shape
|
| 739 |
|
| 740 |
+
x1 = max(0, x1)
|
| 741 |
+
y1 = max(0, y1)
|
| 742 |
+
x2 = min(w, x2)
|
| 743 |
+
y2 = min(h, y2)
|
| 744 |
|
| 745 |
+
crop = image[y1:y2, x1:x2]
|
| 746 |
+
_, buffer = cv2.imencode(".png", crop)
|
| 747 |
+
|
| 748 |
+
return base64.b64encode(buffer).decode("utf-8")
|
| 749 |
|
|
|
|
| 750 |
|
| 751 |
+
# --- NEW: Function to format base64 for Gradio Gallery ---
|
| 752 |
+
def base64_to_gradio_gallery_tuple(base64_str: str, label: str) -> Tuple[str, str]:
|
| 753 |
+
"""Converts raw base64 to a data URI tuple for Gradio Gallery."""
|
| 754 |
+
# Format: ('data:image/png;base64,...', 'label')
|
| 755 |
+
return (f"data:image/png;base64,{base64_str}", label)
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
# --- UPDATED: run_yolo_detection_and_count to use passed counters ---
|
| 759 |
+
def run_yolo_detection_and_count(
|
| 760 |
+
image: np.ndarray, model: YOLO, page_num: int,
|
| 761 |
+
current_eq_count: int, current_fig_count: int
|
| 762 |
+
) -> Tuple[int, int, List[Dict[str, str]], int, int]:
|
| 763 |
+
"""
|
| 764 |
+
Performs YOLO detection and returns page counts, detected items,
|
| 765 |
+
and the updated global counters.
|
| 766 |
+
"""
|
| 767 |
+
|
| 768 |
+
# Use the passed counters as starting points for this page
|
| 769 |
+
eq_counter = current_eq_count
|
| 770 |
+
fig_counter = current_fig_count
|
| 771 |
+
|
| 772 |
page_equations = 0
|
| 773 |
page_figures = 0
|
| 774 |
detected_items = []
|
| 775 |
+
yolo_detections = []
|
| 776 |
|
| 777 |
try:
|
| 778 |
results = model.predict(image, conf=CONF_THRESHOLD, verbose=False)
|
|
|
|
| 790 |
})
|
| 791 |
except Exception as e:
|
| 792 |
logging.error(f"YOLO inference failed on page {page_num}: {e}")
|
| 793 |
+
return 0, 0, [], eq_counter, fig_counter
|
| 794 |
|
| 795 |
merged_detections = merge_overlapping_boxes(yolo_detections, IOU_MERGE_THRESHOLD)
|
| 796 |
final_detections = filter_nested_boxes(merged_detections, IOA_SUPPRESSION_THRESHOLD)
|
|
|
|
| 799 |
bbox = det["coords"]
|
| 800 |
|
| 801 |
if det["class"] == "equation":
|
| 802 |
+
eq_counter += 1
|
| 803 |
page_equations += 1
|
| 804 |
|
| 805 |
b64 = crop_and_convert_to_base64(image, bbox)
|
| 806 |
detected_items.append({
|
| 807 |
"type": "equation",
|
| 808 |
+
"id": f"EQUATION{eq_counter}",
|
| 809 |
"base64": b64
|
| 810 |
})
|
| 811 |
|
| 812 |
elif det["class"] == "figure":
|
| 813 |
+
fig_counter += 1
|
| 814 |
page_figures += 1
|
| 815 |
|
| 816 |
b64 = crop_and_convert_to_base64(image, bbox)
|
| 817 |
detected_items.append({
|
| 818 |
"type": "figure",
|
| 819 |
+
"id": f"FIGURE{fig_counter}",
|
| 820 |
"base64": b64
|
| 821 |
})
|
| 822 |
|
| 823 |
logging.warning(f" -> Page {page_num}: EQs={page_equations}, Figs={page_figures}")
|
| 824 |
+
# Return page counts, detected items, and the UPDATED total counters
|
| 825 |
+
return page_equations, page_figures, detected_items, eq_counter, fig_counter
|
| 826 |
|
| 827 |
|
| 828 |
+
# --- Other unused functions (get_latex_from_base64, etc.) are kept but not modified as
|
| 829 |
+
# the focus is on the concurrency and Gradio Gallery fix. ---
|
| 830 |
|
| 831 |
def get_latex_from_base64(base64_string: str) -> str:
|
| 832 |
if ort_model is None or processor is None:
|
|
|
|
| 852 |
return f"[TR_OCR_ERROR: {e}]"
|
| 853 |
|
| 854 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 855 |
def embed_images_as_base64_in_memory(structured_data, detected_items):
|
| 856 |
tag_regex = re.compile(r'(figure|equation)(\d+)', re.IGNORECASE)
|
| 857 |
|
|
|
|
| 892 |
final_data.append(item)
|
| 893 |
|
| 894 |
return final_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 895 |
|
| 896 |
# ============================================================================
|
| 897 |
+
# --- MAIN DOCUMENT PROCESSING FUNCTION (Fixed for concurrency) ---
|
| 898 |
# ============================================================================
|
| 899 |
|
| 900 |
+
# --- UPDATED return type for clarity ---
|
| 901 |
+
def run_single_pdf_preprocessing(
|
| 902 |
+
pdf_path: str
|
| 903 |
+
) -> Tuple[int, int, int, str, float, Dict[str, int], List[Tuple[str, str]]]:
|
| 904 |
"""
|
| 905 |
+
Runs the pipeline, returns counts, report, total time, page counts dict (str keys),
|
| 906 |
+
and a list of (image_data_uri, label) for the Gradio gallery.
|
| 907 |
"""
|
| 908 |
|
| 909 |
+
# --- INITIALIZE LOCAL COUNTERS ---
|
|
|
|
| 910 |
start_time = time.time()
|
| 911 |
log_messages = []
|
| 912 |
+
|
| 913 |
+
# This list now holds (data_uri, label) tuples for Gradio
|
| 914 |
+
all_gradio_gallery_items: List[Tuple[str, str]] = []
|
| 915 |
|
| 916 |
# Dictionary to store {page_number (int): equation_count (int)}
|
| 917 |
equation_counts_per_page: Dict[int, int] = {}
|
| 918 |
|
| 919 |
+
# --- USE LOCAL COUNTERS FOR THREAD SAFETY ---
|
| 920 |
+
total_figure_count = 0
|
| 921 |
+
total_equation_count = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 922 |
|
| 923 |
|
| 924 |
# 1. Validation and Model Loading
|
| 925 |
t0 = time.time()
|
| 926 |
if not os.path.exists(pdf_path):
|
| 927 |
report = f"❌ FATAL ERROR: Input PDF not found at {pdf_path}."
|
| 928 |
+
# Return empty list of tuples for gallery on error
|
| 929 |
return 0, 0, 0, report, time.time() - start_time, {}, []
|
| 930 |
|
| 931 |
try:
|
|
|
|
| 970 |
|
| 971 |
# Core Detection
|
| 972 |
detect_start = time.time()
|
| 973 |
+
# --- PASSING AND RECEIVING THE COUNTERS HERE (Concurrency Fix) ---
|
| 974 |
+
(
|
| 975 |
+
page_equations,
|
| 976 |
+
page_figures,
|
| 977 |
+
page_images_dicts,
|
| 978 |
+
total_equation_count,
|
| 979 |
+
total_figure_count
|
| 980 |
+
) = run_yolo_detection_and_count(
|
| 981 |
+
original_img,
|
| 982 |
+
model,
|
| 983 |
+
page_num,
|
| 984 |
+
total_equation_count,
|
| 985 |
+
total_figure_count
|
| 986 |
+
)
|
| 987 |
|
| 988 |
+
# --- FORMATTING FOR GRADIO GALLERY (Gradio Format Fix) ---
|
| 989 |
+
for item in page_images_dicts:
|
| 990 |
+
gradio_tuple = base64_to_gradio_gallery_tuple(item["base64"], item["id"])
|
| 991 |
+
all_gradio_gallery_items.append(gradio_tuple)
|
| 992 |
+
|
| 993 |
detect_time = time.time() - detect_start
|
| 994 |
|
| 995 |
# Store the count in the dictionary (INT keys)
|
|
|
|
| 1003 |
detection_loop_time = t5 - t4
|
| 1004 |
log_messages.append(f"Total Detection Loop Time ({total_pages} pages): {detection_loop_time:.4f}s")
|
| 1005 |
|
| 1006 |
+
# Convert integer keys to string keys for JSON serialization
|
| 1007 |
equation_counts_per_page_str_keys: Dict[str, int] = {
|
| 1008 |
str(k): v for k, v in equation_counts_per_page.items()
|
| 1009 |
}
|
|
|
|
| 1014 |
report = (
|
| 1015 |
f"✅ **YOLO Counting Complete!**\n\n"
|
| 1016 |
f"**1) Total Pages Detected in PDF:** **{total_pages}**\n"
|
| 1017 |
+
f"**2) Total Equations Detected:** **{total_equation_count}**\n" # Uses local final count
|
| 1018 |
+
f"**3) Total Figures Detected:** **{total_figure_count}**\n" # Uses local final count
|
| 1019 |
f"---\n"
|
| 1020 |
f"**4) Total Execution Time:** **{total_execution_time:.4f}s**\n"
|
| 1021 |
f"### Detailed Step Timing\n"
|
|
|
|
| 1024 |
f"\n```"
|
| 1025 |
)
|
| 1026 |
|
| 1027 |
+
# Return the dictionary with string keys and the properly formatted gallery items
|
| 1028 |
+
return total_pages, total_equation_count, total_figure_count, report, total_execution_time, equation_counts_per_page_str_keys, all_gradio_gallery_items
|
|
|
|
|
|
|
| 1029 |
|
| 1030 |
|
| 1031 |
# ============================================================================
|
| 1032 |
# --- GRADIO INTERFACE FUNCTION (Updated) ---
|
| 1033 |
# ============================================================================
|
| 1034 |
|
| 1035 |
+
# --- UPDATED return type for clarity ---
|
| 1036 |
+
def gradio_process_pdf(pdf_file) -> Tuple[str, str, str, str, Dict[str, int], List[Tuple[str, str]]]:
|
| 1037 |
"""
|
| 1038 |
Gradio wrapper function to handle file upload and return results.
|
| 1039 |
"""
|
| 1040 |
if pdf_file is None:
|
| 1041 |
+
# Return empty list of tuples for gallery on error
|
| 1042 |
return "N/A", "N/A", "N/A", "Please upload a PDF file.", {}, []
|
| 1043 |
|
| 1044 |
pdf_path = pdf_file.name
|
| 1045 |
|
| 1046 |
try:
|
| 1047 |
# Unpack the new return value: equation_counts_per_page (with string keys)
|
| 1048 |
+
(
|
| 1049 |
+
num_pages,
|
| 1050 |
+
num_equations,
|
| 1051 |
+
num_figures,
|
| 1052 |
+
report,
|
| 1053 |
+
total_time,
|
| 1054 |
+
equation_counts_per_page,
|
| 1055 |
+
gallery_items # Now correctly formatted list of tuples
|
| 1056 |
+
) = run_single_pdf_preprocessing(pdf_path)
|
| 1057 |
|
| 1058 |
|
| 1059 |
# Return results (6 items now)
|
| 1060 |
+
return str(num_pages), str(num_equations), str(num_figures), report, equation_counts_per_page, gallery_items
|
|
|
|
| 1061 |
|
| 1062 |
|
| 1063 |
except Exception as e:
|
| 1064 |
error_msg = f"An unexpected error occurred: {e}"
|
| 1065 |
logging.error(error_msg, exc_info=True)
|
| 1066 |
+
# Return empty list of tuples for gallery on error
|
| 1067 |
return "Error", "Error", "Error", error_msg, {}, []
|
| 1068 |
|
| 1069 |
|
|
|
|
| 1087 |
# NEW OUTPUT: JSON component for structured data
|
| 1088 |
output_page_counts = gr.JSON(label="Equation Count Per Page (Dictionary)")
|
| 1089 |
|
| 1090 |
+
# Gradio Gallery is retained and now receives the correctly formatted list of tuples
|
| 1091 |
output_gallery = gr.Gallery(
|
| 1092 |
+
label="Detected Items (Gallery Format Fix Applied)",
|
| 1093 |
columns=5,
|
| 1094 |
height="auto",
|
| 1095 |
object_fit="contain",
|
|
|
|
| 1099 |
interface = gr.Interface(
|
| 1100 |
fn=gradio_process_pdf,
|
| 1101 |
inputs=input_file,
|
| 1102 |
+
# Outputs list remains the same, but the gallery now works
|
| 1103 |
outputs=[
|
| 1104 |
output_pages,
|
| 1105 |
output_equations,
|
|
|
|
| 1108 |
output_page_counts,
|
| 1109 |
output_gallery
|
| 1110 |
],
|
| 1111 |
+
title="📊 YOLO Counting with Per-Page Data & Timing (Concurrency Fix)",
|
| 1112 |
description=(
|
| 1113 |
+
"Upload a PDF to run YOLO detection. The concurrency bug and Gradio Gallery display error have been fixed."
|
|
|
|
| 1114 |
),
|
| 1115 |
)
|
| 1116 |
|
| 1117 |
print("\nStarting Gradio application...")
|
| 1118 |
+
interface.launch(inbrowser=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|