noahsettersten
commited on
Commit
•
9f13621
1
Parent(s):
7ae16f7
refactor: Separate transcription and code searching
Browse files- Also, make updates for the renaming of AudioTagger modules (e.g.
`Structs` namespace, `SemanticSearchConfiguration` struct).
lib/medical_transcription/code_searcher.ex
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defmodule MedicalTranscription.CodeSearcher do
|
2 |
+
@moduledoc """
|
3 |
+
Takes a portion of text and searches for closely matching results within a list of vectors, by using AudioTagger's
|
4 |
+
SemanticSearch module.
|
5 |
+
"""
|
6 |
+
|
7 |
+
@input_filename "icd9_codelist"
|
8 |
+
|
9 |
+
alias AudioTagger.Classifier.SemanticSearch
|
10 |
+
alias AudioTagger.Structs.SemanticSearchConfiguration
|
11 |
+
|
12 |
+
def prepare_search_configuration() do
|
13 |
+
{model_info, tokenizer} = SemanticSearch.prepare_model()
|
14 |
+
labels_df = read_labels_from_csv!()
|
15 |
+
|
16 |
+
label_embeddings = SemanticSearch.load_label_vectors(vectors_filepath())
|
17 |
+
|
18 |
+
%SemanticSearchConfiguration{
|
19 |
+
labels_df: labels_df,
|
20 |
+
label_embeddings: label_embeddings,
|
21 |
+
model_info: model_info,
|
22 |
+
tokenizer: tokenizer,
|
23 |
+
opts: [similarity_threshold: 0.8]
|
24 |
+
}
|
25 |
+
end
|
26 |
+
|
27 |
+
def process_chunk(%SemanticSearchConfiguration{} = input, text) do
|
28 |
+
SemanticSearch.tag_one(input, text)
|
29 |
+
end
|
30 |
+
|
31 |
+
defp read_labels_from_csv! do
|
32 |
+
Explorer.DataFrame.from_csv!(
|
33 |
+
labels_filepath(),
|
34 |
+
dtypes: [
|
35 |
+
{"code", :string},
|
36 |
+
{"long_description", :string}
|
37 |
+
]
|
38 |
+
)
|
39 |
+
end
|
40 |
+
|
41 |
+
defp input_filepath() do
|
42 |
+
Path.join(AudioTagger.SampleData.cache_dir(), @input_filename)
|
43 |
+
end
|
44 |
+
|
45 |
+
defp vectors_filepath(), do: "#{input_filepath()}.bin"
|
46 |
+
defp labels_filepath(), do: "#{input_filepath()}.csv"
|
47 |
+
end
|
lib/medical_transcription/transcriber.ex
CHANGED
@@ -1,74 +1,46 @@
|
|
1 |
defmodule MedicalTranscription.Transcriber do
|
2 |
-
@
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def stream_transcription_and_search(live_view_pid, audio_file_path) do
|
7 |
-
|
8 |
-
|
9 |
-
labels_df = read_labels_from_csv!()
|
10 |
-
|
11 |
-
# TODO: We could explore storing these vectors within pgvector or Pinecone.io
|
12 |
-
label_embeddings =
|
13 |
-
AudioTagger.Classifier.SemanticSearch.load_label_vectors(vectors_filepath())
|
14 |
|
15 |
# Audio transcription + semantic search
|
16 |
-
for {chunk, index} <-
|
17 |
-
|
18 |
-
|
19 |
-
|> Stream.with_index() do
|
20 |
-
# TODO: A potential improvement would be to not code each chunk of transcribed audio, but to instead gather
|
21 |
-
# complete sentences based on punctuation.
|
22 |
|
23 |
-
|
24 |
-
labels_df: labels_df,
|
25 |
-
label_embeddings: label_embeddings,
|
26 |
-
model_info: model_info,
|
27 |
-
tokenizer: tokenizer,
|
28 |
-
opts: [similarity_threshold: 0.8]
|
29 |
-
}
|
30 |
-
|
31 |
-
chunk_result = process_chunk(input, index, chunk)
|
32 |
-
|
33 |
-
send(live_view_pid, {:transcription_row, chunk_result})
|
34 |
end
|
35 |
end
|
36 |
|
37 |
-
defp
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
]
|
42 |
-
|
43 |
-
Explorer.DataFrame.from_csv!(labels_filepath(), dtypes: column_definitions)
|
44 |
end
|
45 |
|
46 |
-
|
47 |
-
defp process_chunk(%SemanticSearchInput{} = input, index, chunk) do
|
48 |
-
tags = SemanticSearch.tag_one(input, chunk.text)
|
49 |
-
|
50 |
-
[start_mark, end_mark] = process_timestamps(chunk)
|
51 |
-
|
52 |
%{
|
53 |
id: index,
|
54 |
-
start_mark:
|
55 |
-
end_mark:
|
56 |
text: chunk.text,
|
57 |
tags: tags
|
58 |
}
|
59 |
end
|
60 |
|
61 |
-
defp
|
62 |
-
|
63 |
-
seconds |> round() |> Time.from_seconds_after_midnight() |> Time.to_string()
|
64 |
-
end
|
65 |
-
end
|
66 |
-
|
67 |
-
defp input_filepath() do
|
68 |
-
AudioTagger.SampleData.cache_dir()
|
69 |
-
|> Path.join(@input_filename)
|
70 |
end
|
71 |
-
|
72 |
-
defp vectors_filepath(), do: "#{input_filepath()}.bin"
|
73 |
-
defp labels_filepath(), do: "#{input_filepath()}.csv"
|
74 |
end
|
|
|
1 |
defmodule MedicalTranscription.Transcriber do
|
2 |
+
@moduledoc """
|
3 |
+
Takes a path to an audio file and transcribes it to text. As each chunk is available, it passes it to `CodeSearcher`
|
4 |
+
to look for possible matching codes.
|
5 |
+
"""
|
6 |
+
|
7 |
+
alias MedicalTranscription.CodeSearcher
|
8 |
+
|
9 |
+
# Ideas for future exploration:
|
10 |
+
# - Instead of storing the long description vectors in a binary file on disk, we could store them within a vector DB
|
11 |
+
# (such as pgvector or Pinecone.io)
|
12 |
+
# - A potential improvement would be to not code each chunk of transcribed audio separately, but to instead gather
|
13 |
+
# complete sentences based on punctuation. We may want to suggest codes for the entire audio as a single piece as
|
14 |
+
# well
|
15 |
def stream_transcription_and_search(live_view_pid, audio_file_path) do
|
16 |
+
search_configuration = CodeSearcher.prepare_search_configuration()
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Audio transcription + semantic search
|
19 |
+
for {chunk, index} <- stream_transcription(audio_file_path) do
|
20 |
+
tags = CodeSearcher.process_chunk(search_configuration, chunk.text)
|
21 |
+
result = build_result(index, chunk, tags)
|
|
|
|
|
|
|
22 |
|
23 |
+
send(live_view_pid, {:transcription_row, result})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
end
|
25 |
end
|
26 |
|
27 |
+
defp stream_transcription(audio_file_path) do
|
28 |
+
TranscriptionServing
|
29 |
+
|> Nx.Serving.batched_run({:file, audio_file_path})
|
30 |
+
|> Stream.with_index()
|
|
|
|
|
|
|
31 |
end
|
32 |
|
33 |
+
defp build_result(index, chunk, tags) do
|
|
|
|
|
|
|
|
|
|
|
34 |
%{
|
35 |
id: index,
|
36 |
+
start_mark: format_timestamp(chunk.start_timestamp_seconds),
|
37 |
+
end_mark: format_timestamp(chunk.end_timestamp_seconds),
|
38 |
text: chunk.text,
|
39 |
tags: tags
|
40 |
}
|
41 |
end
|
42 |
|
43 |
+
defp format_timestamp(seconds) do
|
44 |
+
seconds |> round() |> Time.from_seconds_after_midnight() |> Time.to_string()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
end
|
|
|
|
|
|
|
46 |
end
|