gradio / components /bar_plot.pyi
hd0013's picture
Upload folder using huggingface_hub
8fdc036 verified
"""gr.BarPlot() component."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Literal
from gradio_client.documentation import document
from gradio.components.plot import AltairPlot, AltairPlotData, Plot
if TYPE_CHECKING:
import pandas as pd
from gradio.events import Dependency
@document()
class BarPlot(Plot):
"""
Creates a bar plot component to display data from a pandas DataFrame (as output). As this component does
not accept user input, it is rarely used as an input component.
Demos: bar_plot
"""
data_model = AltairPlotData
def __init__(
self,
value: pd.DataFrame | Callable | None = None,
x: str | None = None,
y: str | None = None,
*,
color: str | None = None,
vertical: bool = True,
group: str | None = None,
title: str | None = None,
tooltip: list[str] | str | None = None,
x_title: str | None = None,
y_title: str | None = None,
x_label_angle: float | None = None,
y_label_angle: float | None = None,
color_legend_title: str | None = None,
group_title: str | None = None,
color_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
height: int | str | None = None,
width: int | str | None = None,
y_lim: list[int] | None = None,
caption: str | None = None,
interactive: bool | None = True,
label: str | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
every: float | None = None,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
sort: Literal["x", "y", "-x", "-y"] | None = None,
show_actions_button: bool = False,
):
"""
Parameters:
value: The pandas dataframe containing the data to display in a scatter plot. If a callable is provided, the function will be called whenever the app loads to set the initial value of the plot.
x: Column corresponding to the x axis.
y: Column corresponding to the y axis.
color: The column to determine the bar color. Must be categorical (discrete values).
vertical: If True, the bars will be displayed vertically. If False, the x and y axis will be switched, displaying the bars horizontally. Default is True.
group: The column with which to split the overall plot into smaller subplots.
title: The title to display on top of the chart.
tooltip: The column (or list of columns) to display on the tooltip when a user hovers over a bar.
x_title: The title given to the x axis. By default, uses the value of the x parameter.
y_title: The title given to the y axis. By default, uses the value of the y parameter.
x_label_angle: The angle (in degrees) of the x axis labels. Positive values are clockwise, and negative values are counter-clockwise.
y_label_angle: The angle (in degrees) of the y axis labels. Positive values are clockwise, and negative values are counter-clockwise.
color_legend_title: The title given to the color legend. By default, uses the value of color parameter.
group_title: The label displayed on top of the subplot columns (or rows if vertical=True). Use an empty string to omit.
color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation.
height: The height of the plot, specified in pixels if a number is passed, or in CSS units if a string is passed.
width: The width of the plot, specified in pixels if a number is passed, or in CSS units if a string is passed.
y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max].
caption: The (optional) caption to display below the plot.
interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad.
label: The (optional) label to display on the top left corner of the plot.
show_label: Whether the label should be displayed.
every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
visible: Whether the plot should be visible.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
sort: Specifies the sorting axis as either "x", "y", "-x" or "-y". If None, no sorting is applied.
show_actions_button: Whether to show the actions button on the top right corner of the plot.
"""
self.x = x
self.y = y
self.color = color
self.vertical = vertical
self.group = group
self.group_title = group_title
self.tooltip = tooltip
self.title = title
self.x_title = x_title
self.y_title = y_title
self.x_label_angle = x_label_angle
self.y_label_angle = y_label_angle
self.color_legend_title = color_legend_title
self.group_title = group_title
self.color_legend_position = color_legend_position
self.y_lim = y_lim
self.caption = caption
self.interactive_chart = interactive
self.width = width
self.height = height
self.sort = sort
self.show_actions_button = show_actions_button
super().__init__(
value=value,
label=label,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
every=every,
)
def get_block_name(self) -> str:
return "plot"
@staticmethod
def create_plot(
value: pd.DataFrame,
x: str,
y: str,
color: str | None = None,
vertical: bool = True,
group: str | None = None,
title: str | None = None,
tooltip: list[str] | str | None = None,
x_title: str | None = None,
y_title: str | None = None,
x_label_angle: float | None = None,
y_label_angle: float | None = None,
color_legend_title: str | None = None,
group_title: str | None = None,
color_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
height: int | str | None = None,
width: int | str | None = None,
y_lim: list[int] | None = None,
interactive: bool | None = True,
sort: Literal["x", "y", "-x", "-y"] | None = None,
):
"""Helper for creating the bar plot."""
import altair as alt
interactive = True if interactive is None else interactive
orientation = (
{"field": group, "title": group_title if group_title is not None else group}
if group
else {}
)
x_title = x_title or x
y_title = y_title or y
# If horizontal, switch x and y
if not vertical:
y, x = x, y
x = f"sum({x}):Q"
y_title, x_title = x_title, y_title
orientation = {"row": alt.Row(**orientation)} if orientation else {} # type: ignore
x_lim = y_lim
y_lim = None
else:
y = f"sum({y}):Q"
x_lim = None
orientation = {"column": alt.Column(**orientation)} if orientation else {} # type: ignore
encodings = dict(
x=alt.X(
x, # type: ignore
title=x_title, # type: ignore
scale=AltairPlot.create_scale(x_lim), # type: ignore
axis=alt.Axis(labelAngle=x_label_angle)
if x_label_angle is not None
else alt.Axis(),
sort=sort if vertical and sort is not None else None,
),
y=alt.Y(
y, # type: ignore
title=y_title, # type: ignore
scale=AltairPlot.create_scale(y_lim), # type: ignore
axis=alt.Axis(labelAngle=y_label_angle)
if y_label_angle is not None
else alt.Axis(),
sort=sort if not vertical and sort is not None else None,
),
**orientation,
)
properties = {}
if title:
properties["title"] = title
if height:
properties["height"] = height
if width:
properties["width"] = width
if color:
domain = value[color].unique().tolist()
range_ = list(range(len(domain)))
encodings["color"] = {
"field": color,
"type": "nominal",
"scale": {"domain": domain, "range": range_},
"legend": AltairPlot.create_legend(
position=color_legend_position, title=color_legend_title or color
),
}
if tooltip:
encodings["tooltip"] = tooltip # type: ignore
chart = (
alt.Chart(value) # type: ignore
.mark_bar() # type: ignore
.encode(**encodings)
.properties(background="transparent", **properties)
)
if interactive:
chart = chart.interactive()
return chart
def preprocess(self, payload: AltairPlotData) -> AltairPlotData:
"""
Parameters:
payload: The data to display in a bar plot.
Returns:
(Rarely used) passes the data displayed in the bar plot as an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "bar").
"""
return payload
def postprocess(self, value: pd.DataFrame | None) -> AltairPlotData | None:
"""
Parameters:
value: Expects a pandas DataFrame containing the data to display in the bar plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`).
Returns:
The data to display in a bar plot, in the form of an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "bar").
"""
# if None or update
if value is None:
return value
if self.x is None or self.y is None:
raise ValueError("No value provided for required parameters `x` and `y`.")
chart = self.create_plot(
value=value,
x=self.x,
y=self.y,
color=self.color,
vertical=self.vertical,
group=self.group,
title=self.title,
tooltip=self.tooltip,
x_title=self.x_title,
y_title=self.y_title,
x_label_angle=self.x_label_angle,
y_label_angle=self.y_label_angle,
color_legend_title=self.color_legend_title,
color_legend_position=self.color_legend_position, # type: ignore
group_title=self.group_title,
y_lim=self.y_lim,
interactive=self.interactive_chart,
height=self.height,
width=self.width,
sort=self.sort, # type: ignore
)
return AltairPlotData(type="altair", plot=chart.to_json(), chart="bar")
def example_payload(self) -> Any:
return None
def example_value(self) -> Any:
import pandas as pd
return pd.DataFrame({self.x: [1, 2, 3], self.y: [4, 5, 6]})