gradio / components /dataset.py
hd0013's picture
Upload folder using huggingface_hub
8fdc036 verified
raw
history blame
7.57 kB
"""gr.Dataset() component."""
from __future__ import annotations
from typing import Any, Literal
from gradio_client.documentation import document
from gradio import processing_utils
from gradio.components.base import (
Component,
get_component_instance,
)
from gradio.events import Events
@document()
class Dataset(Component):
"""
Creates a gallery or table to display data samples. This component is designed for internal use to display examples.
"""
EVENTS = [Events.click, Events.select]
def __init__(
self,
*,
label: str | None = None,
components: list[Component] | list[str],
component_props: list[dict[str, Any]] | None = None,
samples: list[list[Any]] | None = None,
headers: list[str] | None = None,
type: Literal["values", "index"] = "values",
samples_per_page: int = 10,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
proxy_url: str | None = None,
):
"""
Parameters:
label: The label for this component, appears above the component.
components: Which component types to show in this dataset widget, can be passed in as a list of string names or Components instances. The following components are supported in a Dataset: Audio, Checkbox, CheckboxGroup, ColorPicker, Dataframe, Dropdown, File, HTML, Image, Markdown, Model3D, Number, Radio, Slider, Textbox, TimeSeries, Video
samples: a nested list of samples. Each sublist within the outer list represents a data sample, and each element within the sublist represents an value for each component
headers: Column headers in the Dataset widget, should be the same len as components. If not provided, inferred from component labels
type: 'values' if clicking on a sample should pass the value of the sample, or "index" if it should pass the index of the sample
samples_per_page: how many examples to show per page.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
container: If True, will place the component in a container - providing some extra padding around the border.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
proxy_url: The URL of the external Space used to load this component. Set automatically when using `gr.load()`. This should not be set manually.
"""
super().__init__(
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
)
self.container = container
self.scale = scale
self.min_width = min_width
self._components = [get_component_instance(c) for c in components]
if component_props is None:
self.component_props = [
component.recover_kwargs(
component.get_config(),
["value"],
)
for component in self._components
]
else:
self.component_props = component_props
# Narrow type to Component
if not all(isinstance(c, Component) for c in self._components):
raise TypeError(
"All components in a `Dataset` must be subclasses of `Component`"
)
self._components = [c for c in self._components if isinstance(c, Component)]
self.proxy_url = proxy_url
for component in self._components:
component.proxy_url = proxy_url
self.samples = [[]] if samples is None else samples
for example in self.samples:
for i, (component, ex) in enumerate(zip(self._components, example)):
# If proxy_url is set, that means it is being loaded from an external Gradio app
# which means that the example has already been processed.
if self.proxy_url is None:
# The `as_example()` method has been renamed to `process_example()` but we
# use the previous name to be backwards-compatible with previously-created
# custom components
example[i] = component.as_example(ex)
example[i] = processing_utils.move_files_to_cache(
example[i], component, keep_in_cache=True
)
self.type = type
self.label = label
if headers is not None:
self.headers = headers
elif all(c.label is None for c in self._components):
self.headers = []
else:
self.headers = [c.label or "" for c in self._components]
self.samples_per_page = samples_per_page
def api_info(self) -> dict[str, str]:
return {"type": "integer", "description": "index of selected example"}
def get_config(self):
config = super().get_config()
config["components"] = []
config["component_props"] = self.component_props
config["component_ids"] = []
for component in self._components:
config["components"].append(component.get_block_name())
config["component_ids"].append(component._id)
return config
def preprocess(self, payload: int) -> int | list | None:
"""
Parameters:
payload: the index of the selected example in the dataset
Returns:
Passes the selected sample either as a `list` of data corresponding to each input component (if `type` is "value") or as an `int` index (if `type` is "index")
"""
if self.type == "index":
return payload
elif self.type == "values":
return self.samples[payload]
def postprocess(self, samples: list[list]) -> dict:
"""
Parameters:
samples: Expects a `list[list]` corresponding to the dataset data, can be used to update the dataset.
Returns:
Returns the updated dataset data as a `dict` with the key "samples".
"""
return {
"samples": samples,
"__type__": "update",
}
def example_payload(self) -> Any:
return 0
def example_value(self) -> Any:
return []