Spaces:
Sleeping
Sleeping
import torchvision.transforms as T | |
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
pre_process = T.Compose( | |
[ | |
T.ToPILImage(), | |
T.Resize( | |
size=(224, 224), | |
interpolation=T.InterpolationMode.BICUBIC, | |
antialias=True, | |
), | |
T.ToTensor(), | |
T.Normalize( | |
mean=(0.48145466, 0.4578275, 0.40821073), | |
std=(0.26862954, 0.26130258, 0.27577711), | |
), | |
] | |
) | |
def pre_process_foo(img_size: tuple, dataset: str = "laion") -> T.Compose: | |
return T.Compose( | |
[ | |
T.ToPILImage(), | |
T.Resize( | |
size=img_size, | |
interpolation=T.InterpolationMode.BICUBIC, | |
antialias=True, | |
), | |
T.ToTensor(), | |
T.Normalize( | |
mean=(0.48145466, 0.4578275, 0.40821073) | |
if dataset != "imagenet" | |
else IMAGENET_DEFAULT_MEAN, | |
std=(0.26862954, 0.26130258, 0.27577711) | |
if dataset != "imagenet" | |
else IMAGENET_DEFAULT_STD, | |
), | |
] | |
) | |