Spaces:
Runtime error
Runtime error
import os | |
import pickle | |
from json import dumps, loads | |
from typing import Any, List, Mapping, Optional | |
import numpy as np | |
import openai | |
import pandas as pd | |
import streamlit as st | |
from dotenv import load_dotenv | |
from huggingface_hub import HfFileSystem | |
from langchain.llms.base import LLM | |
from llama_index import ( | |
Document, | |
GPTVectorStoreIndex, | |
LLMPredictor, | |
PromptHelper, | |
ServiceContext, | |
SimpleDirectoryReader, | |
StorageContext, | |
load_index_from_storage, | |
) | |
from llama_index.llms.base import llm_completion_callback | |
from llama_index.llms import CompletionResponse, CustomLLM, LLMMetadata | |
from llama_index.prompts import Prompt | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from assets.prompts import custom_prompts | |
load_dotenv() | |
# openai.api_key = os.getenv("OPENAI_API_KEY") | |
fs = HfFileSystem() | |
# define prompt helper | |
# set maximum input size | |
CONTEXT_WINDOW = 2048 | |
# set number of output tokens | |
NUM_OUTPUT = 525 | |
# set maximum chunk overlap | |
CHUNK_OVERLAP_RATION = 0.2 | |
text_qa_template = Prompt(custom_prompts.text_qa_template_str) | |
refine_template = Prompt(custom_prompts.refine_template_str) | |
def load_model(model_name: str): | |
# llm_model_name = "bigscience/bloom-560m" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, config="T5Config") | |
pipe = pipeline( | |
task="text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
# device=0, # GPU device number | |
# max_length=512, | |
do_sample=True, | |
top_p=0.95, | |
top_k=50, | |
temperature=0.7, | |
) | |
return pipe | |
class OurLLM(CustomLLM): | |
def __init__(self): | |
self.model_name = "" | |
self.pipeline = None | |
def modelName(self): | |
return self.model_name | |
def pipeline(self): | |
return self.pipeline | |
def modelName(self, name: str): | |
self.model_name = name | |
def pipeline(self, value): | |
self.pipeline = value | |
def metadata(self) -> LLMMetadata: | |
"""Get LLM metadata.""" | |
return LLMMetadata( | |
context_window=CONTEXT_WINDOW, | |
num_output=NUM_OUTPUT, | |
model_name=self.model_name, | |
) | |
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse: | |
prompt_length = len(prompt) | |
response = self.pipeline(prompt, max_new_tokens=NUM_OUTPUT)[0]["generated_text"] | |
# only return newly generated tokens | |
text = response[prompt_length:] | |
return CompletionResponse(text=text) | |
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponse: | |
raise NotImplementedError() | |
class LlamaCustom: | |
def __init__(self, model_name: str) -> None: | |
self.vector_index = self.initialize_index(model_name=model_name) | |
def initialize_index(self, model_name: str): | |
index_name = model_name.split("/")[-1] | |
file_path = f"./vectorStores/{index_name}" | |
if os.path.exists(path=file_path): | |
# rebuild storage context | |
storage_context = StorageContext.from_defaults(persist_dir=file_path) | |
# local load index access | |
index = load_index_from_storage(storage_context) | |
# huggingface repo load access | |
# with fs.open(file_path, "r") as file: | |
# index = pickle.loads(file.readlines()) | |
return index | |
else: | |
prompt_helper = PromptHelper( | |
context_window=CONTEXT_WINDOW, | |
num_output=NUM_OUTPUT, | |
chunk_overlap_ratio=CHUNK_OVERLAP_RATION, | |
) | |
# define llm | |
pipe = load_model(model_name=model_name) | |
llm = OurLLM() | |
llm.model_name = model_name | |
llm.pipeline = pipe | |
llm_predictor = LLMPredictor(llm=llm) | |
service_context = ServiceContext.from_defaults( | |
llm_predictor=llm_predictor, prompt_helper=prompt_helper | |
) | |
# documents = prepare_data(r"./assets/regItems.json") | |
documents = SimpleDirectoryReader(input_dir="./assets/pdf").load_data() | |
index = GPTVectorStoreIndex.from_documents( | |
documents, service_context=service_context | |
) | |
# local write access | |
index.storage_context.persist(file_path) | |
# huggingface repo write access | |
# with fs.open(file_path, "w") as file: | |
# file.write(pickle.dumps(index)) | |
return index | |
def get_response(self, query_str): | |
print("query_str: ", query_str) | |
# query_engine = self.vector_index.as_query_engine() | |
query_engine = self.vector_index.as_query_engine( | |
text_qa_template=text_qa_template, refine_template=refine_template | |
) | |
response = query_engine.query(query_str) | |
print("metadata: ", response.metadata) | |
return str(response) | |