Spaces:
Sleeping
Sleeping
| import os | |
| import openai | |
| from dotenv import load_dotenv | |
| from langchain.chains import LLMChain | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.prompts import PromptTemplate | |
| from langchain.vectorstores import FAISS | |
| from langchain.document_loaders import PyPDFLoader | |
| loader = PyPDFLoader("./assets/CADWReg.pdf") | |
| pages = loader.load_and_split() | |
| load_dotenv() | |
| embeddings = OpenAIEmbeddings() | |
| prompt_template = """Answer the question using the given context to the best of your ability. | |
| If you don't know, answer I don't know. | |
| Context: {context} | |
| Topic: {topic}""" | |
| PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "topic"]) | |
| class LangOpen: | |
| def __init__(self, model_name: str) -> None: | |
| self.index = self.initialize_index("langOpen") | |
| self.llm = ChatOpenAI(temperature=0.3, model=model_name) | |
| self.chain = LLMChain(llm=self.llm, prompt=PROMPT) | |
| def initialize_index(self, index_name): | |
| path = f"./vectorStores/{index_name}" | |
| if os.path.exists(path=path): | |
| return FAISS.load_local(folder_path=path, embeddings=embeddings) | |
| else: | |
| faiss = FAISS.from_documents(pages, embeddings) | |
| faiss.save_local(path) | |
| return faiss | |
| def get_response(self, query_str): | |
| print("query_str: ", query_str) | |
| print("model_name: ", self.llm.model_name) | |
| docs = self.index.similarity_search(query_str, k=4) | |
| inputs = [{"context": doc.page_content, "topic": query_str} for doc in docs] | |
| result = self.chain.apply(inputs)[0]["text"] | |
| return result | |