RegBot4.0 / models /bloom.py
Zwea Htet
fixed some bugs
557e9af
raw
history blame
2.9 kB
import os
import pickle
from json import dumps, loads
import numpy as np
import openai
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import HfFileSystem
from llama_index import (
Document,
GPTVectorStoreIndex,
LLMPredictor,
PromptHelper,
ServiceContext,
StorageContext,
load_index_from_storage,
)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from utils.customLLM import CustomLLM
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
fs = HfFileSystem()
# get model
# model_name = "bigscience/bloom-560m"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name, config='T5Config')
# define prompt helper
# set maximum input size
context_window = 2048
# set number of output tokens
num_output = 525
# set maximum chunk overlap
chunk_overlap_ratio = 0.2
prompt_helper = PromptHelper(context_window, num_output, chunk_overlap_ratio)
# create a pipeline
# pl = pipeline(
# model=model,
# tokenizer=tokenizer,
# task="text-generation",
# # device=0, # GPU device number
# # max_length=512,
# do_sample=True,
# top_p=0.95,
# top_k=50,
# temperature=0.7
# )
# define llm
llm_predictor = LLMPredictor(llm=CustomLLM())
service_context = ServiceContext.from_defaults(
llm_predictor=llm_predictor, prompt_helper=prompt_helper
)
def prepare_data(file_path: str):
df = pd.read_json(file_path)
df = df.replace(to_replace="", value=np.nan).dropna(axis=0) # remove null values
parsed = loads(df.to_json(orient="records"))
documents = []
for item in parsed:
document = Document(
text=item["paragraphText"],
doc_id=item["_id"]["$oid"],
extra_info={
"chapter": item["chapter"],
"article": item["article"],
"title": item["title"],
},
)
documents.append(document)
return documents
def initialize_index(index_name):
file_path = f"./vectorStores/{index_name}"
if os.path.exists(file_path):
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir=file_path)
# local load index access
index = load_index_from_storage(storage_context)
# huggingface repo load access
# with fs.open(file_path, "r") as file:
# index = pickle.loads(file.readlines())
return index
else:
documents = prepare_data(r"./assets/regItems.json")
index = GPTVectorStoreIndex.from_documents(
documents, service_context=service_context
)
# local write access
index.storage_context.persist(file_path)
# huggingface repo write access
# with fs.open(file_path, "w") as file:
# file.write(pickle.dumps(index))
return index