hbestm's picture
Duplicate from Ssspirit/gpt-academic-play
2531606
#include <type_traits>
#include <cstring>
#include <algorithm>
#include <utility> // std::pair, std::move, std::forward
#include <atomic>
#include <type_traits> // aligned_storage_t
#include <string>
#include <vector>
#include <array>
#include <cassert>
#include "libipc/ipc.h"
#include "libipc/def.h"
#include "libipc/shm.h"
#include "libipc/pool_alloc.h"
#include "libipc/queue.h"
#include "libipc/policy.h"
#include "libipc/rw_lock.h"
#include "libipc/waiter.h"
#include "libipc/utility/log.h"
#include "libipc/utility/id_pool.h"
#include "libipc/utility/scope_guard.h"
#include "libipc/utility/utility.h"
#include "libipc/memory/resource.h"
#include "libipc/platform/detail.h"
#include "libipc/circ/elem_array.h"
namespace {
using msg_id_t = std::uint32_t;
using acc_t = std::atomic<msg_id_t>;
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t;
template <std::size_t AlignSize>
struct msg_t<0, AlignSize> {
msg_id_t cc_id_;
msg_id_t id_;
std::int32_t remain_;
bool storage_;
};
template <std::size_t DataSize, std::size_t AlignSize>
struct msg_t : msg_t<0, AlignSize> {
std::aligned_storage_t<DataSize, AlignSize> data_ {};
msg_t() = default;
msg_t(msg_id_t cc_id, msg_id_t id, std::int32_t remain, void const * data, std::size_t size)
: msg_t<0, AlignSize> {cc_id, id, remain, (data == nullptr) || (size == 0)} {
if (this->storage_) {
if (data != nullptr) {
// copy storage-id
*reinterpret_cast<ipc::storage_id_t*>(&data_) =
*static_cast<ipc::storage_id_t const *>(data);
}
}
else std::memcpy(&data_, data, size);
}
};
template <typename T>
ipc::buff_t make_cache(T& data, std::size_t size) {
auto ptr = ipc::mem::alloc(size);
std::memcpy(ptr, &data, (ipc::detail::min)(sizeof(data), size));
return { ptr, size, ipc::mem::free };
}
struct cache_t {
std::size_t fill_;
ipc::buff_t buff_;
cache_t(std::size_t f, ipc::buff_t && b)
: fill_(f), buff_(std::move(b))
{}
void append(void const * data, std::size_t size) {
if (fill_ >= buff_.size() || data == nullptr || size == 0) return;
auto new_fill = (ipc::detail::min)(fill_ + size, buff_.size());
std::memcpy(static_cast<ipc::byte_t*>(buff_.data()) + fill_, data, new_fill - fill_);
fill_ = new_fill;
}
};
auto cc_acc() {
static ipc::shm::handle acc_h("__CA_CONN__", sizeof(acc_t));
return static_cast<acc_t*>(acc_h.get());
}
IPC_CONSTEXPR_ std::size_t align_chunk_size(std::size_t size) noexcept {
return (((size - 1) / ipc::large_msg_align) + 1) * ipc::large_msg_align;
}
IPC_CONSTEXPR_ std::size_t calc_chunk_size(std::size_t size) noexcept {
return ipc::make_align(alignof(std::max_align_t), align_chunk_size(
ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>)) + size));
}
struct chunk_t {
std::atomic<ipc::circ::cc_t> &conns() noexcept {
return *reinterpret_cast<std::atomic<ipc::circ::cc_t> *>(this);
}
void *data() noexcept {
return reinterpret_cast<ipc::byte_t *>(this)
+ ipc::make_align(alignof(std::max_align_t), sizeof(std::atomic<ipc::circ::cc_t>));
}
};
struct chunk_info_t {
ipc::id_pool<> pool_;
ipc::spin_lock lock_;
IPC_CONSTEXPR_ static std::size_t chunks_mem_size(std::size_t chunk_size) noexcept {
return ipc::id_pool<>::max_count * chunk_size;
}
ipc::byte_t *chunks_mem() noexcept {
return reinterpret_cast<ipc::byte_t *>(this + 1);
}
chunk_t *at(std::size_t chunk_size, ipc::storage_id_t id) noexcept {
if (id < 0) return nullptr;
return reinterpret_cast<chunk_t *>(chunks_mem() + (chunk_size * id));
}
};
auto& chunk_storages() {
class chunk_handle_t {
ipc::shm::handle handle_;
public:
chunk_info_t *get_info(std::size_t chunk_size) {
if (!handle_.valid() &&
!handle_.acquire( ("__CHUNK_INFO__" + ipc::to_string(chunk_size)).c_str(),
sizeof(chunk_info_t) + chunk_info_t::chunks_mem_size(chunk_size) )) {
ipc::error("[chunk_storages] chunk_shm.id_info_.acquire failed: chunk_size = %zd\n", chunk_size);
return nullptr;
}
auto info = static_cast<chunk_info_t*>(handle_.get());
if (info == nullptr) {
ipc::error("[chunk_storages] chunk_shm.id_info_.get failed: chunk_size = %zd\n", chunk_size);
return nullptr;
}
return info;
}
};
static ipc::map<std::size_t, chunk_handle_t> chunk_hs;
return chunk_hs;
}
chunk_info_t *chunk_storage_info(std::size_t chunk_size) {
auto &storages = chunk_storages();
std::decay_t<decltype(storages)>::iterator it;
{
static ipc::rw_lock lock;
IPC_UNUSED_ std::shared_lock<ipc::rw_lock> guard {lock};
if ((it = storages.find(chunk_size)) == storages.end()) {
using chunk_handle_t = std::decay_t<decltype(storages)>::value_type::second_type;
guard.unlock();
IPC_UNUSED_ std::lock_guard<ipc::rw_lock> guard {lock};
it = storages.emplace(chunk_size, chunk_handle_t{}).first;
}
}
return it->second.get_info(chunk_size);
}
std::pair<ipc::storage_id_t, void*> acquire_storage(std::size_t size, ipc::circ::cc_t conns) {
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return {};
info->lock_.lock();
info->pool_.prepare();
// got an unique id
auto id = info->pool_.acquire();
info->lock_.unlock();
auto chunk = info->at(chunk_size, id);
if (chunk == nullptr) return {};
chunk->conns().store(conns, std::memory_order_relaxed);
return { id, chunk->data() };
}
void *find_storage(ipc::storage_id_t id, std::size_t size) {
if (id < 0) {
ipc::error("[find_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return nullptr;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return nullptr;
return info->at(chunk_size, id)->data();
}
void release_storage(ipc::storage_id_t id, std::size_t size) {
if (id < 0) {
ipc::error("[release_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return;
info->lock_.lock();
info->pool_.release(id);
info->lock_.unlock();
}
template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::unicast>,
std::atomic<ipc::circ::cc_t> &/*conns*/, ipc::circ::cc_t /*curr_conns*/, ipc::circ::cc_t /*conn_id*/) noexcept {
return true;
}
template <ipc::relat Rp, ipc::relat Rc>
bool sub_rc(ipc::wr<Rp, Rc, ipc::trans::broadcast>,
std::atomic<ipc::circ::cc_t> &conns, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) noexcept {
auto last_conns = curr_conns & ~conn_id;
for (unsigned k = 0;;) {
auto chunk_conns = conns.load(std::memory_order_acquire);
if (conns.compare_exchange_weak(chunk_conns, chunk_conns & last_conns, std::memory_order_release)) {
return (chunk_conns & last_conns) == 0;
}
ipc::yield(k);
}
}
template <typename Flag>
void recycle_storage(ipc::storage_id_t id, std::size_t size, ipc::circ::cc_t curr_conns, ipc::circ::cc_t conn_id) {
if (id < 0) {
ipc::error("[recycle_storage] id is invalid: id = %ld, size = %zd\n", (long)id, size);
return;
}
std::size_t chunk_size = calc_chunk_size(size);
auto info = chunk_storage_info(chunk_size);
if (info == nullptr) return;
auto chunk = info->at(chunk_size, id);
if (chunk == nullptr) return;
if (!sub_rc(Flag{}, chunk->conns(), curr_conns, conn_id)) {
return;
}
info->lock_.lock();
info->pool_.release(id);
info->lock_.unlock();
}
template <typename MsgT>
bool clear_message(void* p) {
auto msg = static_cast<MsgT*>(p);
if (msg->storage_) {
std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg->remain_;
if (r_size <= 0) {
ipc::error("[clear_message] invalid msg size: %d\n", (int)r_size);
return true;
}
release_storage(
*reinterpret_cast<ipc::storage_id_t*>(&msg->data_),
static_cast<std::size_t>(r_size));
}
return true;
}
struct conn_info_head {
ipc::string name_;
msg_id_t cc_id_; // connection-info id
ipc::detail::waiter cc_waiter_, wt_waiter_, rd_waiter_;
ipc::shm::handle acc_h_;
conn_info_head(char const * name)
: name_ {name}
, cc_id_ {(cc_acc() == nullptr) ? 0 : cc_acc()->fetch_add(1, std::memory_order_relaxed)}
, cc_waiter_{("__CC_CONN__" + name_).c_str()}
, wt_waiter_{("__WT_CONN__" + name_).c_str()}
, rd_waiter_{("__RD_CONN__" + name_).c_str()}
, acc_h_ {("__AC_CONN__" + name_).c_str(), sizeof(acc_t)} {
}
void quit_waiting() {
cc_waiter_.quit_waiting();
wt_waiter_.quit_waiting();
rd_waiter_.quit_waiting();
}
auto acc() {
return static_cast<acc_t*>(acc_h_.get());
}
auto& recv_cache() {
thread_local ipc::unordered_map<msg_id_t, cache_t> tls;
return tls;
}
};
template <typename W, typename F>
bool wait_for(W& waiter, F&& pred, std::uint64_t tm) {
if (tm == 0) return !pred();
for (unsigned k = 0; pred();) {
bool ret = true;
ipc::sleep(k, [&k, &ret, &waiter, &pred, tm] {
ret = waiter.wait_if(std::forward<F>(pred), tm);
k = 0;
});
if (!ret) return false; // timeout or fail
if (k == 0) break; // k has been reset
}
return true;
}
template <typename Policy,
std::size_t DataSize = ipc::data_length,
std::size_t AlignSize = (ipc::detail::min)(DataSize, alignof(std::max_align_t))>
struct queue_generator {
using queue_t = ipc::queue<msg_t<DataSize, AlignSize>, Policy>;
struct conn_info_t : conn_info_head {
queue_t que_;
conn_info_t(char const * name)
: conn_info_head{name}
, que_{("__QU_CONN__" +
ipc::to_string(DataSize) + "__" +
ipc::to_string(AlignSize) + "__" + name).c_str()} {
}
void disconnect_receiver() {
bool dis = que_.disconnect();
this->quit_waiting();
if (dis) {
this->recv_cache().clear();
}
}
};
};
template <typename Policy>
struct detail_impl {
using policy_t = Policy;
using flag_t = typename policy_t::flag_t;
using queue_t = typename queue_generator<policy_t>::queue_t;
using conn_info_t = typename queue_generator<policy_t>::conn_info_t;
constexpr static conn_info_t* info_of(ipc::handle_t h) noexcept {
return static_cast<conn_info_t*>(h);
}
constexpr static queue_t* queue_of(ipc::handle_t h) noexcept {
return (info_of(h) == nullptr) ? nullptr : &(info_of(h)->que_);
}
/* API implementations */
static void disconnect(ipc::handle_t h) {
auto que = queue_of(h);
if (que == nullptr) {
return;
}
que->shut_sending();
assert(info_of(h) != nullptr);
info_of(h)->disconnect_receiver();
}
static bool reconnect(ipc::handle_t * ph, bool start_to_recv) {
assert(ph != nullptr);
assert(*ph != nullptr);
auto que = queue_of(*ph);
if (que == nullptr) {
return false;
}
if (start_to_recv) {
que->shut_sending();
if (que->connect()) { // wouldn't connect twice
info_of(*ph)->cc_waiter_.broadcast();
return true;
}
return false;
}
// start_to_recv == false
if (que->connected()) {
info_of(*ph)->disconnect_receiver();
}
return que->ready_sending();
}
static bool connect(ipc::handle_t * ph, char const * name, bool start_to_recv) {
assert(ph != nullptr);
if (*ph == nullptr) {
*ph = ipc::mem::alloc<conn_info_t>(name);
}
return reconnect(ph, start_to_recv);
}
static void destroy(ipc::handle_t h) {
disconnect(h);
ipc::mem::free(info_of(h));
}
static std::size_t recv_count(ipc::handle_t h) noexcept {
auto que = queue_of(h);
if (que == nullptr) {
return ipc::invalid_value;
}
return que->conn_count();
}
static bool wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
return false;
}
return wait_for(info_of(h)->cc_waiter_, [que, r_count] {
return que->conn_count() < r_count;
}, tm);
}
template <typename F>
static bool send(F&& gen_push, ipc::handle_t h, void const * data, std::size_t size) {
if (data == nullptr || size == 0) {
ipc::error("fail: send(%p, %zd)\n", data, size);
return false;
}
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: send, queue_of(h) == nullptr\n");
return false;
}
if (que->elems() == nullptr) {
ipc::error("fail: send, queue_of(h)->elems() == nullptr\n");
return false;
}
if (!que->ready_sending()) {
ipc::error("fail: send, que->ready_sending() == false\n");
return false;
}
ipc::circ::cc_t conns = que->elems()->connections(std::memory_order_relaxed);
if (conns == 0) {
ipc::error("fail: send, there is no receiver on this connection.\n");
return false;
}
// calc a new message id
auto acc = info_of(h)->acc();
if (acc == nullptr) {
ipc::error("fail: send, info_of(h)->acc() == nullptr\n");
return false;
}
auto msg_id = acc->fetch_add(1, std::memory_order_relaxed);
auto try_push = std::forward<F>(gen_push)(info_of(h), que, msg_id);
if (size > ipc::large_msg_limit) {
auto dat = acquire_storage(size, conns);
void * buf = dat.second;
if (buf != nullptr) {
std::memcpy(buf, data, size);
return try_push(static_cast<std::int32_t>(size) -
static_cast<std::int32_t>(ipc::data_length), &(dat.first), 0);
}
// try using message fragment
//ipc::log("fail: shm::handle for big message. msg_id: %zd, size: %zd\n", msg_id, size);
}
// push message fragment
std::int32_t offset = 0;
for (std::int32_t i = 0; i < static_cast<std::int32_t>(size / ipc::data_length); ++i, offset += ipc::data_length) {
if (!try_push(static_cast<std::int32_t>(size) - offset - static_cast<std::int32_t>(ipc::data_length),
static_cast<ipc::byte_t const *>(data) + offset, ipc::data_length)) {
return false;
}
}
// if remain > 0, this is the last message fragment
std::int32_t remain = static_cast<std::int32_t>(size) - offset;
if (remain > 0) {
if (!try_push(remain - static_cast<std::int32_t>(ipc::data_length),
static_cast<ipc::byte_t const *>(data) + offset,
static_cast<std::size_t>(remain))) {
return false;
}
}
return true;
}
static bool send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return send([tm](auto info, auto que, auto msg_id) {
return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(
[](void*) { return true; },
info->cc_id_, msg_id, remain, data, size);
}, tm)) {
ipc::log("force_push: msg_id = %zd, remain = %d, size = %zd\n", msg_id, remain, size);
if (!que->force_push(
clear_message<typename queue_t::value_t>,
info->cc_id_, msg_id, remain, data, size)) {
return false;
}
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static bool try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return send([tm](auto info, auto que, auto msg_id) {
return [tm, info, que, msg_id](std::int32_t remain, void const * data, std::size_t size) {
if (!wait_for(info->wt_waiter_, [&] {
return !que->push(
[](void*) { return true; },
info->cc_id_, msg_id, remain, data, size);
}, tm)) {
return false;
}
info->rd_waiter_.broadcast();
return true;
};
}, h, data, size);
}
static ipc::buff_t recv(ipc::handle_t h, std::uint64_t tm) {
auto que = queue_of(h);
if (que == nullptr) {
ipc::error("fail: recv, queue_of(h) == nullptr\n");
return {};
}
if (!que->connected()) {
// hasn't connected yet, just return.
return {};
}
auto& rc = info_of(h)->recv_cache();
for (;;) {
// pop a new message
typename queue_t::value_t msg;
if (!wait_for(info_of(h)->rd_waiter_, [que, &msg] {
return !que->pop(msg);
}, tm)) {
// pop failed, just return.
return {};
}
info_of(h)->wt_waiter_.broadcast();
if ((info_of(h)->acc() != nullptr) && (msg.cc_id_ == info_of(h)->cc_id_)) {
continue; // ignore message to self
}
// msg.remain_ may minus & abs(msg.remain_) < data_length
std::int32_t r_size = static_cast<std::int32_t>(ipc::data_length) + msg.remain_;
if (r_size <= 0) {
ipc::error("fail: recv, r_size = %d\n", (int)r_size);
return {};
}
std::size_t msg_size = static_cast<std::size_t>(r_size);
// large message
if (msg.storage_) {
ipc::storage_id_t buf_id = *reinterpret_cast<ipc::storage_id_t*>(&msg.data_);
void* buf = find_storage(buf_id, msg_size);
if (buf != nullptr) {
struct recycle_t {
ipc::storage_id_t storage_id;
ipc::circ::cc_t curr_conns;
ipc::circ::cc_t conn_id;
} *r_info = ipc::mem::alloc<recycle_t>(recycle_t{
buf_id, que->elems()->connections(std::memory_order_relaxed), que->connected_id()
});
if (r_info == nullptr) {
ipc::log("fail: ipc::mem::alloc<recycle_t>.\n");
return ipc::buff_t{buf, msg_size}; // no recycle
} else {
return ipc::buff_t{buf, msg_size, [](void* p_info, std::size_t size) {
auto r_info = static_cast<recycle_t *>(p_info);
IPC_UNUSED_ auto finally = ipc::guard([r_info] {
ipc::mem::free(r_info);
});
recycle_storage<flag_t>(r_info->storage_id, size, r_info->curr_conns, r_info->conn_id);
}, r_info};
}
} else {
ipc::log("fail: shm::handle for large message. msg_id: %zd, buf_id: %zd, size: %zd\n", msg.id_, buf_id, msg_size);
continue;
}
}
// find cache with msg.id_
auto cac_it = rc.find(msg.id_);
if (cac_it == rc.end()) {
if (msg_size <= ipc::data_length) {
return make_cache(msg.data_, msg_size);
}
// gc
if (rc.size() > 1024) {
std::vector<msg_id_t> need_del;
for (auto const & pair : rc) {
auto cmp = std::minmax(msg.id_, pair.first);
if (cmp.second - cmp.first > 8192) {
need_del.push_back(pair.first);
}
}
for (auto id : need_del) rc.erase(id);
}
// cache the first message fragment
rc.emplace(msg.id_, cache_t { ipc::data_length, make_cache(msg.data_, msg_size) });
}
// has cached before this message
else {
auto& cac = cac_it->second;
// this is the last message fragment
if (msg.remain_ <= 0) {
cac.append(&(msg.data_), msg_size);
// finish this message, erase it from cache
auto buff = std::move(cac.buff_);
rc.erase(cac_it);
return buff;
}
// there are remain datas after this message
cac.append(&(msg.data_), ipc::data_length);
}
}
}
static ipc::buff_t try_recv(ipc::handle_t h) {
return recv(h, 0);
}
}; // detail_impl<Policy>
template <typename Flag>
using policy_t = ipc::policy::choose<ipc::circ::elem_array, Flag>;
} // internal-linkage
namespace ipc {
template <typename Flag>
ipc::handle_t chan_impl<Flag>::inited() {
ipc::detail::waiter::init();
return nullptr;
}
template <typename Flag>
bool chan_impl<Flag>::connect(ipc::handle_t * ph, char const * name, unsigned mode) {
return detail_impl<policy_t<Flag>>::connect(ph, name, mode & receiver);
}
template <typename Flag>
bool chan_impl<Flag>::reconnect(ipc::handle_t * ph, unsigned mode) {
return detail_impl<policy_t<Flag>>::reconnect(ph, mode & receiver);
}
template <typename Flag>
void chan_impl<Flag>::disconnect(ipc::handle_t h) {
detail_impl<policy_t<Flag>>::disconnect(h);
}
template <typename Flag>
void chan_impl<Flag>::destroy(ipc::handle_t h) {
detail_impl<policy_t<Flag>>::destroy(h);
}
template <typename Flag>
char const * chan_impl<Flag>::name(ipc::handle_t h) {
auto info = detail_impl<policy_t<Flag>>::info_of(h);
return (info == nullptr) ? nullptr : info->name_.c_str();
}
template <typename Flag>
std::size_t chan_impl<Flag>::recv_count(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::recv_count(h);
}
template <typename Flag>
bool chan_impl<Flag>::wait_for_recv(ipc::handle_t h, std::size_t r_count, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::wait_for_recv(h, r_count, tm);
}
template <typename Flag>
bool chan_impl<Flag>::send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::send(h, data, size, tm);
}
template <typename Flag>
buff_t chan_impl<Flag>::recv(ipc::handle_t h, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::recv(h, tm);
}
template <typename Flag>
bool chan_impl<Flag>::try_send(ipc::handle_t h, void const * data, std::size_t size, std::uint64_t tm) {
return detail_impl<policy_t<Flag>>::try_send(h, data, size, tm);
}
template <typename Flag>
buff_t chan_impl<Flag>::try_recv(ipc::handle_t h) {
return detail_impl<policy_t<Flag>>::try_recv(h);
}
template struct chan_impl<ipc::wr<relat::single, relat::single, trans::unicast >>;
// template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::unicast >>; // TBD
// template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::unicast >>; // TBD
template struct chan_impl<ipc::wr<relat::single, relat::multi , trans::broadcast>>;
template struct chan_impl<ipc::wr<relat::multi , relat::multi , trans::broadcast>>;
} // namespace ipc