owl-con-demo / train.py
Hritik
add code
7862e49
import argparse
from functools import partial
import os
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from sconf import Config
from icecream import ic
from peft import LoraConfig, get_peft_model
from transformers import Trainer
from transformers.training_args import TrainingArguments
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from data_utils import train_valid_test_datasets_provider
from utils import batchify, set_args
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--pretrained-ckpt', type=str, default='MAGAer13/mplug-owl-llama-7b-pt',
help='Path to the pretrained checkpoint.')
parser.add_argument('--finetuned-ckpt', type=str, default=None,
help='Path to the finetuned checkpoint.')
parser.add_argument('--inference_mode', type=bool, default=False,
help='The inference mode.')
parser.add_argument('--seq-length', type=int, default=1024,
help='Maximum sequence length to process.')
parser.add_argument('--use-lora', action='store_true', help='LORA.')
parser.add_argument('--all-params', action='store_true', help='All params in LORA')
parser.add_argument('--lora-r', type=int, default=8,
help='curvature.')
parser.add_argument('--lora-alpha', type=int, default=32,
help='The initialization coefficient of lora-alpha.')
parser.add_argument('--lora-dropout', type=int, default=0.05,
help='The initialization coefficient of lora_dropout.')
parser.add_argument('--bf16', action='store_true', default=False,
help='Run model in bfloat16 mode.')
parser.add_argument('--wandb_run_name', type=str, default="test", help='wandb run name.')
# Data
parser.add_argument('--mm-config', type=str, default=None, help='Multimodal Config.')
parser.add_argument('--num-workers', type=int, default=8,
help="Dataloader number of workers.")
# Training HyperParameters
parser.add_argument('--train-epochs', type=int, default=3,
help='Total number of epochs to train over all '
'training runs.')
parser.add_argument('--micro-batch-size', type=int, default=None,
help='Batch size per model instance (local batch size). '
'Global batch size is local batch size times data '
'parallel size times number of micro batches.')
parser.add_argument('--lr', type=float, default=None,
help='Initial learning rate. Depending on decay style '
'and initial warmup, the learing rate at each '
'iteration would be different.')
parser.add_argument('--min-lr', type=float, default=1e-6,
help='Minumum value for learning rate. The scheduler'
'clip values below this threshold.')
parser.add_argument('--weight-decay', type=float, default=0.01,
help='Weight decay coefficient for L2 regularization.')
parser.add_argument('--gradient-accumulation-steps', type=int, default=8,
help='The gradient accumulation steps.')
parser.add_argument('--clip-grad', type=float, default=1.0,
help='Gradient clipping based on global L2 norm.')
parser.add_argument('--adam-beta1', type=float, default=0.9,
help='First coefficient for computing running averages '
'of gradient and its square')
parser.add_argument('--adam-beta2', type=float, default=0.999,
help='Second coefficient for computing running averages '
'of gradient and its square')
parser.add_argument('--adam-eps', type=float, default=1e-08,
help='Term added to the denominator to improve'
'numerical stability')
parser.add_argument('--num-warmup-steps', type=int, default=50,
help='The number of warmup steps.')
parser.add_argument('--num-training-steps', type=int, default=4236,
help='The number of total training steps for lr scheduler.')
parser.add_argument('--loss_objective', default = 'sequential', choices = ['sequential'], help = 'toggle loss objectives')
# Evaluation & Save
parser.add_argument('--save-path', type=str, default=None,
help='Output directory to save checkpoints to.')
parser.add_argument('--save-interval', type=int, default=None,
help='Number of iterations between checkpoint saves.')
parser.add_argument('--eval-iters', type=int, default=100,
help='Number of iterations to run for evaluation'
'validation/test for.')
# Other
parser.add_argument('--gradient-checkpointing', action='store_true',
help='The gradient checkpointing.')
parser.add_argument('--logging-nan-inf-filter', action='store_true',
help='The logging nan inf filter.')
parser.add_argument('--ddp-find-unused-parameters', action='store_true',
help='unused parameters finding.')
parser.add_argument('--do-train', action='store_true', default=True,
help='Whether to do training.')
parser.add_argument('--local_rank', type=int, default=-1,
help='Local rank')
softmax = nn.Softmax(dim=2)
sigm = torch.nn.Sigmoid()
class CustomTrainer(Trainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def get_train_dataloader(self) -> DataLoader:
dataset = self.train_dataset
sampler = DistributedSampler(dataset)
return torch.utils.data.DataLoader(
dataset, batch_size=self._train_batch_size,
sampler=sampler,
num_workers=self.args.dataloader_num_workers,
drop_last=True,
pin_memory=True,
collate_fn=batchify)
def get_eval_dataloader(self, eval_dataset) -> DataLoader:
dataset = self.eval_dataset
sampler = DistributedSampler(dataset, shuffle=False)
return torch.utils.data.DataLoader(
dataset, batch_size=self._train_batch_size,
sampler=sampler,
num_workers=self.args.dataloader_num_workers,
drop_last=True,
pin_memory=True,
collate_fn=batchify)
def compute_loss(self, model, inputs, return_outputs = False):
outputs = model(pixel_values = inputs['pixel_values'], video_pixel_values = inputs['video_pixel_values'], labels = inputs['labels'],
num_images = inputs['num_images'], num_videos = inputs['num_videos'], input_ids = inputs['input_ids'], non_padding_mask = inputs['non_padding_mask'], \
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
loss = outputs.loss
return loss
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys = None):
for k, v in inputs.items():
if torch.is_tensor(v):
if v.dtype == torch.float:
inputs[k] = v.bfloat16()
inputs[k] = inputs[k].to(model.device)
with torch.no_grad():
loss = self.compute_loss(model, inputs)
loss = loss.detach()
return loss, None, None
def main():
args, left_argv = parser.parse_known_args()
ic(left_argv)
config = Config(args.mm_config)
set_args(args)
print(args.pretrained_ckpt)
model = MplugOwlForConditionalGeneration.from_pretrained(
args.pretrained_ckpt,
torch_dtype=torch.bfloat16 if args.bf16 else torch.half,
)
tokenizer = LlamaTokenizer.from_pretrained(args.pretrained_ckpt)
if args.use_lora:
for name, param in model.named_parameters():
param.requires_grad = False
if args.all_params:
peft_config = LoraConfig(
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
inference_mode=args.inference_mode,
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout
)
else:
peft_config = LoraConfig(
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)',
inference_mode=args.inference_mode,
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
if args.gradient_checkpointing:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.language_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
model.language_model.apply(
partial(model.language_model._set_gradient_checkpointing, value=True))
else:
for name, param in model.named_parameters():
if 'language_model' in name:
param.requires_grad = True
else:
param.requires_grad = False
if args.gradient_checkpointing:
model.language_model.apply(
partial(model.language_model._set_gradient_checkpointing, value=True))
model.train()
train_data, valid_data = train_valid_test_datasets_provider(
config.data_files, config=config,
tokenizer=tokenizer, seq_length=args.seq_length, loss_objective = args.loss_objective
)
if len(valid_data) > 500:
valid_data = torch.utils.data.Subset(valid_data, range(500))
trainer = CustomTrainer(
model=model,
train_dataset=train_data,
eval_dataset=valid_data,
args=TrainingArguments(
learning_rate=args.lr,
warmup_steps=args.num_warmup_steps,
do_train=args.do_train,
do_eval=True,
num_train_epochs=args.train_epochs,
output_dir=args.save_path,
save_strategy='epoch',
evaluation_strategy='steps',
eval_steps=args.eval_iters,
per_device_train_batch_size=args.micro_batch_size,
max_grad_norm=args.clip_grad,
weight_decay=args.weight_decay,
bf16=args.bf16,
fp16=not args.bf16,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_checkpointing=args.gradient_checkpointing,
logging_steps=args.eval_iters//10,
logging_dir=args.save_path,
logging_nan_inf_filter=args.logging_nan_inf_filter,
ddp_find_unused_parameters=args.ddp_find_unused_parameters,
run_name=args.wandb_run_name,
prediction_loss_only=True,
),
)
trainer.loss_objective = args.loss_objective
trainer.tokenizer = tokenizer
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
if args.local_rank == 0:
with open(os.path.join(args.save_path, "params.txt"), "w") as file:
for key in sorted(vars(args)):
value = getattr(args, key)
file.write(f"{key}: {value}\n")
trainer.train()
model.save_pretrained(args.save_path)
if __name__ == '__main__':
main()