Spaces:
Runtime error
Runtime error
import argparse | |
from functools import partial | |
import os | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import DataLoader | |
from torch.utils.data.distributed import DistributedSampler | |
from sconf import Config | |
from icecream import ic | |
from peft import LoraConfig, get_peft_model | |
from transformers import Trainer | |
from transformers.training_args import TrainingArguments | |
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration | |
from transformers.models.llama.tokenization_llama import LlamaTokenizer | |
from data_utils import train_valid_test_datasets_provider | |
from utils import batchify, set_args | |
parser = argparse.ArgumentParser() | |
# Model | |
parser.add_argument('--pretrained-ckpt', type=str, default='MAGAer13/mplug-owl-llama-7b-pt', | |
help='Path to the pretrained checkpoint.') | |
parser.add_argument('--finetuned-ckpt', type=str, default=None, | |
help='Path to the finetuned checkpoint.') | |
parser.add_argument('--inference_mode', type=bool, default=False, | |
help='The inference mode.') | |
parser.add_argument('--seq-length', type=int, default=1024, | |
help='Maximum sequence length to process.') | |
parser.add_argument('--use-lora', action='store_true', help='LORA.') | |
parser.add_argument('--all-params', action='store_true', help='All params in LORA') | |
parser.add_argument('--lora-r', type=int, default=8, | |
help='curvature.') | |
parser.add_argument('--lora-alpha', type=int, default=32, | |
help='The initialization coefficient of lora-alpha.') | |
parser.add_argument('--lora-dropout', type=int, default=0.05, | |
help='The initialization coefficient of lora_dropout.') | |
parser.add_argument('--bf16', action='store_true', default=False, | |
help='Run model in bfloat16 mode.') | |
parser.add_argument('--wandb_run_name', type=str, default="test", help='wandb run name.') | |
# Data | |
parser.add_argument('--mm-config', type=str, default=None, help='Multimodal Config.') | |
parser.add_argument('--num-workers', type=int, default=8, | |
help="Dataloader number of workers.") | |
# Training HyperParameters | |
parser.add_argument('--train-epochs', type=int, default=3, | |
help='Total number of epochs to train over all ' | |
'training runs.') | |
parser.add_argument('--micro-batch-size', type=int, default=None, | |
help='Batch size per model instance (local batch size). ' | |
'Global batch size is local batch size times data ' | |
'parallel size times number of micro batches.') | |
parser.add_argument('--lr', type=float, default=None, | |
help='Initial learning rate. Depending on decay style ' | |
'and initial warmup, the learing rate at each ' | |
'iteration would be different.') | |
parser.add_argument('--min-lr', type=float, default=1e-6, | |
help='Minumum value for learning rate. The scheduler' | |
'clip values below this threshold.') | |
parser.add_argument('--weight-decay', type=float, default=0.01, | |
help='Weight decay coefficient for L2 regularization.') | |
parser.add_argument('--gradient-accumulation-steps', type=int, default=8, | |
help='The gradient accumulation steps.') | |
parser.add_argument('--clip-grad', type=float, default=1.0, | |
help='Gradient clipping based on global L2 norm.') | |
parser.add_argument('--adam-beta1', type=float, default=0.9, | |
help='First coefficient for computing running averages ' | |
'of gradient and its square') | |
parser.add_argument('--adam-beta2', type=float, default=0.999, | |
help='Second coefficient for computing running averages ' | |
'of gradient and its square') | |
parser.add_argument('--adam-eps', type=float, default=1e-08, | |
help='Term added to the denominator to improve' | |
'numerical stability') | |
parser.add_argument('--num-warmup-steps', type=int, default=50, | |
help='The number of warmup steps.') | |
parser.add_argument('--num-training-steps', type=int, default=4236, | |
help='The number of total training steps for lr scheduler.') | |
parser.add_argument('--loss_objective', default = 'sequential', choices = ['sequential'], help = 'toggle loss objectives') | |
# Evaluation & Save | |
parser.add_argument('--save-path', type=str, default=None, | |
help='Output directory to save checkpoints to.') | |
parser.add_argument('--save-interval', type=int, default=None, | |
help='Number of iterations between checkpoint saves.') | |
parser.add_argument('--eval-iters', type=int, default=100, | |
help='Number of iterations to run for evaluation' | |
'validation/test for.') | |
# Other | |
parser.add_argument('--gradient-checkpointing', action='store_true', | |
help='The gradient checkpointing.') | |
parser.add_argument('--logging-nan-inf-filter', action='store_true', | |
help='The logging nan inf filter.') | |
parser.add_argument('--ddp-find-unused-parameters', action='store_true', | |
help='unused parameters finding.') | |
parser.add_argument('--do-train', action='store_true', default=True, | |
help='Whether to do training.') | |
parser.add_argument('--local_rank', type=int, default=-1, | |
help='Local rank') | |
softmax = nn.Softmax(dim=2) | |
sigm = torch.nn.Sigmoid() | |
class CustomTrainer(Trainer): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
def get_train_dataloader(self) -> DataLoader: | |
dataset = self.train_dataset | |
sampler = DistributedSampler(dataset) | |
return torch.utils.data.DataLoader( | |
dataset, batch_size=self._train_batch_size, | |
sampler=sampler, | |
num_workers=self.args.dataloader_num_workers, | |
drop_last=True, | |
pin_memory=True, | |
collate_fn=batchify) | |
def get_eval_dataloader(self, eval_dataset) -> DataLoader: | |
dataset = self.eval_dataset | |
sampler = DistributedSampler(dataset, shuffle=False) | |
return torch.utils.data.DataLoader( | |
dataset, batch_size=self._train_batch_size, | |
sampler=sampler, | |
num_workers=self.args.dataloader_num_workers, | |
drop_last=True, | |
pin_memory=True, | |
collate_fn=batchify) | |
def compute_loss(self, model, inputs, return_outputs = False): | |
outputs = model(pixel_values = inputs['pixel_values'], video_pixel_values = inputs['video_pixel_values'], labels = inputs['labels'], | |
num_images = inputs['num_images'], num_videos = inputs['num_videos'], input_ids = inputs['input_ids'], non_padding_mask = inputs['non_padding_mask'], \ | |
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask']) | |
loss = outputs.loss | |
return loss | |
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys = None): | |
for k, v in inputs.items(): | |
if torch.is_tensor(v): | |
if v.dtype == torch.float: | |
inputs[k] = v.bfloat16() | |
inputs[k] = inputs[k].to(model.device) | |
with torch.no_grad(): | |
loss = self.compute_loss(model, inputs) | |
loss = loss.detach() | |
return loss, None, None | |
def main(): | |
args, left_argv = parser.parse_known_args() | |
ic(left_argv) | |
config = Config(args.mm_config) | |
set_args(args) | |
print(args.pretrained_ckpt) | |
model = MplugOwlForConditionalGeneration.from_pretrained( | |
args.pretrained_ckpt, | |
torch_dtype=torch.bfloat16 if args.bf16 else torch.half, | |
) | |
tokenizer = LlamaTokenizer.from_pretrained(args.pretrained_ckpt) | |
if args.use_lora: | |
for name, param in model.named_parameters(): | |
param.requires_grad = False | |
if args.all_params: | |
peft_config = LoraConfig( | |
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)', | |
inference_mode=args.inference_mode, | |
r=args.lora_r, | |
lora_alpha=args.lora_alpha, | |
lora_dropout=args.lora_dropout | |
) | |
else: | |
peft_config = LoraConfig( | |
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)', | |
inference_mode=args.inference_mode, | |
r=args.lora_r, | |
lora_alpha=args.lora_alpha, | |
lora_dropout=args.lora_dropout | |
) | |
model = get_peft_model(model, peft_config) | |
model.print_trainable_parameters() | |
if args.gradient_checkpointing: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.language_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
model.language_model.apply( | |
partial(model.language_model._set_gradient_checkpointing, value=True)) | |
else: | |
for name, param in model.named_parameters(): | |
if 'language_model' in name: | |
param.requires_grad = True | |
else: | |
param.requires_grad = False | |
if args.gradient_checkpointing: | |
model.language_model.apply( | |
partial(model.language_model._set_gradient_checkpointing, value=True)) | |
model.train() | |
train_data, valid_data = train_valid_test_datasets_provider( | |
config.data_files, config=config, | |
tokenizer=tokenizer, seq_length=args.seq_length, loss_objective = args.loss_objective | |
) | |
if len(valid_data) > 500: | |
valid_data = torch.utils.data.Subset(valid_data, range(500)) | |
trainer = CustomTrainer( | |
model=model, | |
train_dataset=train_data, | |
eval_dataset=valid_data, | |
args=TrainingArguments( | |
learning_rate=args.lr, | |
warmup_steps=args.num_warmup_steps, | |
do_train=args.do_train, | |
do_eval=True, | |
num_train_epochs=args.train_epochs, | |
output_dir=args.save_path, | |
save_strategy='epoch', | |
evaluation_strategy='steps', | |
eval_steps=args.eval_iters, | |
per_device_train_batch_size=args.micro_batch_size, | |
max_grad_norm=args.clip_grad, | |
weight_decay=args.weight_decay, | |
bf16=args.bf16, | |
fp16=not args.bf16, | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
gradient_checkpointing=args.gradient_checkpointing, | |
logging_steps=args.eval_iters//10, | |
logging_dir=args.save_path, | |
logging_nan_inf_filter=args.logging_nan_inf_filter, | |
ddp_find_unused_parameters=args.ddp_find_unused_parameters, | |
run_name=args.wandb_run_name, | |
prediction_loss_only=True, | |
), | |
) | |
trainer.loss_objective = args.loss_objective | |
trainer.tokenizer = tokenizer | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(model) | |
if args.local_rank == 0: | |
with open(os.path.join(args.save_path, "params.txt"), "w") as file: | |
for key in sorted(vars(args)): | |
value = getattr(args, key) | |
file.write(f"{key}: {value}\n") | |
trainer.train() | |
model.save_pretrained(args.save_path) | |
if __name__ == '__main__': | |
main() |