owl-con-demo / nle_inference.py
Hritik
add app and nle code
0ba1d16
raw
history blame
1.91 kB
import os
import csv
import json
import torch
import argparse
import pandas as pd
from tqdm import tqdm
from peft import LoraConfig, get_peft_model
from torch.utils.data import Dataset, DataLoader
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
PROMPT_FEEDBACK = '''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <|video|>
Human: What is the misalignment between this video and the description: "{caption}"?
AI: '''
generate_kwargs = {
'do_sample': True,
'top_k': 5,
'max_length': 512
}
class VideoCaptionDataset(Dataset):
def __init__(self, videopath, text):
self.videopath = videopath
self.text = text
def __len__(self):
return 1
def __getitem__(self, index):
item = {}
item['videopath'] = self.videopath
item['neg_caption'] = self.text
return item
def get_nle(model, processor, tokenizer, dataloader):
with torch.no_grad():
for _, batch in tqdm(enumerate(dataloader)):
videopaths = batch['videopath']
neg_caption = batch['neg_caption'][0]
prompts = [PROMPT_FEEDBACK.format(caption = neg_caption)]
inputs = processor(text=prompts, videos=videopaths, num_frames=32, return_tensors='pt')
inputs = {k: v.bfloat16() if v.dtype == torch.float else v for k, v in inputs.items()}
inputs = {k: v.to(model.device) for k, v in inputs.items()}
res = model.generate(**inputs, **generate_kwargs)
generated_nle = tokenizer.decode(res.tolist()[0], skip_special_tokens=True)
return generated_nle