Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ os.system("wget https://www.dropbox.com/s/xv6inxwy0so4ni0/LR.png -O LR.png")
|
|
28 |
os.system("wget https://www.dropbox.com/s/abydd1oczs1163l/Ref.png -O Ref.png")
|
29 |
|
30 |
def resize(img):
|
31 |
-
max_side =
|
32 |
w = img.size[0]
|
33 |
h = img.size[1]
|
34 |
if max(h, w) > max_side:
|
@@ -64,10 +64,9 @@ description="Demo application for Reference-based Video Super-Resolution (RefVSR
|
|
64 |
|
65 |
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is the small-sized model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The sample frames are in HD resolution (1920x1080) and in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
#Ref.save('Ref.png')
|
71 |
examples=[['LR.png', 'Ref.png']]
|
72 |
|
73 |
gr.Interface(inference,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
|
|
|
28 |
os.system("wget https://www.dropbox.com/s/abydd1oczs1163l/Ref.png -O Ref.png")
|
29 |
|
30 |
def resize(img):
|
31 |
+
max_side = 512
|
32 |
w = img.size[0]
|
33 |
h = img.size[1]
|
34 |
if max(h, w) > max_side:
|
|
|
64 |
|
65 |
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is the small-sized model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The sample frames are in HD resolution (1920x1080) and in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
66 |
|
67 |
+
LR = resize(Image.open('LR.png')).save('LR.png')
|
68 |
+
Ref = resize(Image.open('Ref.png')).save('Ref.png')
|
69 |
+
|
|
|
70 |
examples=[['LR.png', 'Ref.png']]
|
71 |
|
72 |
gr.Interface(inference,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
|