Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
-
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetuned"
|
6 |
|
7 |
-
# Set Streamlit page config
|
8 |
st.set_page_config(page_title="Sentiment Analysis App")
|
9 |
|
10 |
-
|
11 |
sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
12 |
|
13 |
-
# Title and user input
|
14 |
st.title("Sentiment Analysis App")
|
|
|
15 |
user_input = st.text_area("Enter a message:")
|
16 |
|
17 |
-
# Function to add CSS style and icons
|
18 |
-
def custom_css():
|
19 |
-
st.markdown(
|
20 |
-
"""
|
21 |
-
<style>
|
22 |
-
/* Add some custom CSS */
|
23 |
-
.btn {
|
24 |
-
background-color: #008CBA;
|
25 |
-
color: white;
|
26 |
-
padding: 8px 20px;
|
27 |
-
text-align: center;
|
28 |
-
text-decoration: none;
|
29 |
-
display: inline-block;
|
30 |
-
font-size: 16px;
|
31 |
-
margin: 4px 2px;
|
32 |
-
transition-duration: 0.4s;
|
33 |
-
cursor: pointer;
|
34 |
-
border-radius: 8px;
|
35 |
-
}
|
36 |
-
/* Add an icon to the button */
|
37 |
-
.icon {
|
38 |
-
display: inline-block;
|
39 |
-
vertical-align: middle;
|
40 |
-
width: 20px;
|
41 |
-
height: 20px;
|
42 |
-
margin-right: 5px;
|
43 |
-
}
|
44 |
-
</style>
|
45 |
-
""",
|
46 |
-
unsafe_allow_html=True,
|
47 |
-
)
|
48 |
-
|
49 |
-
# Render the custom CSS
|
50 |
-
custom_css()
|
51 |
-
|
52 |
-
# Analyze sentiment button
|
53 |
if st.button("Analyze Sentiment"):
|
54 |
if user_input:
|
55 |
# Perform sentiment analysis
|
@@ -58,4 +20,4 @@ if st.button("Analyze Sentiment"):
|
|
58 |
sentiment_score = results[0]["score"]
|
59 |
|
60 |
st.write(f"Sentiment: {sentiment_label}")
|
61 |
-
st.write(f"Confidence Score: {sentiment_score:.2f}")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
|
|
|
5 |
|
|
|
6 |
st.set_page_config(page_title="Sentiment Analysis App")
|
7 |
|
8 |
+
|
9 |
sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
10 |
|
|
|
11 |
st.title("Sentiment Analysis App")
|
12 |
+
|
13 |
user_input = st.text_area("Enter a message:")
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if st.button("Analyze Sentiment"):
|
16 |
if user_input:
|
17 |
# Perform sentiment analysis
|
|
|
20 |
sentiment_score = results[0]["score"]
|
21 |
|
22 |
st.write(f"Sentiment: {sentiment_label}")
|
23 |
+
st.write(f"Confidence Score: {sentiment_score:.2f}")
|