Spaces:
Runtime error
Runtime error
Update app.py (#2)
Browse files- Update app.py (21922409acafb8da66d91c517e8c9ca61cb38b99)
Co-authored-by: Geofrey Kamau <Jeff28@users.noreply.huggingface.co>
app.py
CHANGED
@@ -1,51 +1,51 @@
|
|
1 |
-
from flask import Flask, render_template, request
|
2 |
-
from PIL import Image
|
3 |
-
from io import BytesIO
|
4 |
-
import base64
|
5 |
-
from predict import predict_potato, predict_tomato
|
6 |
-
from model import potato_model, tomato_model
|
7 |
-
import torch
|
8 |
-
|
9 |
-
app = Flask(__name__)
|
10 |
-
|
11 |
-
# Load models
|
12 |
-
potato_model.load_state_dict(torch.load("models
|
13 |
-
tomato_model.load_state_dict(torch.load("models
|
14 |
-
|
15 |
-
# potato_model = torch.load("Models\\potato_model_statedict__f.pth", map_location=torch.device('cpu'))
|
16 |
-
# potato_model.load_state_dict(torch.load("Models\\potato_model_statedict__f.pth", map_location=torch.device('cpu')))
|
17 |
-
# tomato_model = torch.load("Models\\tomato_model_statedict__f.pth", map_location=torch.device('cpu'))
|
18 |
-
# potato_model.load_state_dict(torch.load("Models\\tomato_model_statedict__f.pth", map_location=torch.device('cpu')))
|
19 |
-
|
20 |
-
|
21 |
-
@app.route('/')
|
22 |
-
def home():
|
23 |
-
# Default to potato model
|
24 |
-
return render_template('index.html', model_type='potato')
|
25 |
-
|
26 |
-
@app.route('/predict', methods=['POST'])
|
27 |
-
def predict():
|
28 |
-
# Get the selected model type
|
29 |
-
model_type = request.form['model_type']
|
30 |
-
|
31 |
-
# Get the image file from the request
|
32 |
-
file = request.files['file']
|
33 |
-
|
34 |
-
if model_type == 'tomato':
|
35 |
-
class_name, probability, image = predict_tomato(file, tomato_model)
|
36 |
-
background_image = r'static
|
37 |
-
|
38 |
-
else:
|
39 |
-
class_name, probability, image = predict_potato(file, potato_model)
|
40 |
-
background_image = r'static
|
41 |
-
|
42 |
-
# Convert image to base64 format
|
43 |
-
buffered = BytesIO()
|
44 |
-
image.save(buffered, format="JPEG")
|
45 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
46 |
-
|
47 |
-
# Pass the base64 encoded image and background image to the frontend
|
48 |
-
return render_template('index.html', image=img_str, class_name=class_name, probability=f"{probability * 100:.2f}%", background_image=background_image)
|
49 |
-
|
50 |
-
if __name__ == '__main__':
|
51 |
-
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
+
from PIL import Image
|
3 |
+
from io import BytesIO
|
4 |
+
import base64
|
5 |
+
from predict import predict_potato, predict_tomato
|
6 |
+
from model import potato_model, tomato_model
|
7 |
+
import torch
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
|
11 |
+
# Load models
|
12 |
+
potato_model.load_state_dict(torch.load("models/potato_model_statedict__f.pth", map_location=torch.device('cpu')))
|
13 |
+
tomato_model.load_state_dict(torch.load("models/tomato_model_statedict__f.pth", map_location=torch.device('cpu')))
|
14 |
+
|
15 |
+
# potato_model = torch.load("Models\\potato_model_statedict__f.pth", map_location=torch.device('cpu'))
|
16 |
+
# potato_model.load_state_dict(torch.load("Models\\potato_model_statedict__f.pth", map_location=torch.device('cpu')))
|
17 |
+
# tomato_model = torch.load("Models\\tomato_model_statedict__f.pth", map_location=torch.device('cpu'))
|
18 |
+
# potato_model.load_state_dict(torch.load("Models\\tomato_model_statedict__f.pth", map_location=torch.device('cpu')))
|
19 |
+
|
20 |
+
|
21 |
+
@app.route('/')
|
22 |
+
def home():
|
23 |
+
# Default to potato model
|
24 |
+
return render_template('index.html', model_type='potato')
|
25 |
+
|
26 |
+
@app.route('/predict', methods=['POST'])
|
27 |
+
def predict():
|
28 |
+
# Get the selected model type
|
29 |
+
model_type = request.form['model_type']
|
30 |
+
|
31 |
+
# Get the image file from the request
|
32 |
+
file = request.files['file']
|
33 |
+
|
34 |
+
if model_type == 'tomato':
|
35 |
+
class_name, probability, image = predict_tomato(file, tomato_model)
|
36 |
+
background_image = r'static/tomato_background.jpg'
|
37 |
+
|
38 |
+
else:
|
39 |
+
class_name, probability, image = predict_potato(file, potato_model)
|
40 |
+
background_image = r'static/potato_background.webp'
|
41 |
+
|
42 |
+
# Convert image to base64 format
|
43 |
+
buffered = BytesIO()
|
44 |
+
image.save(buffered, format="JPEG")
|
45 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
46 |
+
|
47 |
+
# Pass the base64 encoded image and background image to the frontend
|
48 |
+
return render_template('index.html', image=img_str, class_name=class_name, probability=f"{probability * 100:.2f}%", background_image=background_image)
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
app.run(debug=True)
|