hasibzunair commited on
Commit
77ac391
1 Parent(s): 9d8113c
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py CHANGED
@@ -108,11 +108,11 @@ if __name__ == "__main__":
108
  gr.components.Image(type="filepath", label="Input Image"),
109
  gr.components.Image(type="numpy", label="Predicted Output"),
110
  examples=[
111
- "./data/examples/a.jpeg",
112
- "./data/examples/b.jpeg",
113
- "./data/examples/c.jpeg",
114
- "./data/examples/d.jpeg",
115
- "./data/examples/e.jpeg",
116
  ],
117
  title=title,
118
  description=description,
 
108
  gr.components.Image(type="filepath", label="Input Image"),
109
  gr.components.Image(type="numpy", label="Predicted Output"),
110
  examples=[
111
+ "./data/examples/godzillaxkong.jpeg",
112
+ "./data/examples/avengers.jpeg",
113
+ "./data/examples/dinosaur.jpeg",
114
+ "./data/examples/chitauri.jpeg",
115
+ "./data/examples/kayak.jpeg",
116
  ],
117
  title=title,
118
  description=description,
data/.DS_Store CHANGED
Binary files a/data/.DS_Store and b/data/.DS_Store differ
 
data/examples/VOC_000030.jpg DELETED
Binary file (121 kB)
 
data/examples/avengers.jpeg ADDED
data/examples/b.jpeg DELETED
Binary file (64.7 kB)
 
data/examples/c.jpeg DELETED
Binary file (122 kB)
 
data/examples/chitauri.jpeg ADDED
data/examples/d.jpeg DELETED
Binary file (88 kB)
 
data/examples/dinosaur.jpeg ADDED
data/examples/e.jpeg DELETED
Binary file (99.8 kB)
 
data/examples/godzillaxkong.jpeg ADDED
data/examples/{a.jpeg → kayak.jpeg} RENAMED
File without changes
media/description.html CHANGED
@@ -12,7 +12,7 @@
12
  In a self-supervised procedure (i.e. pretext task) without any additional training (i.e. downstream task), context-based representation learning is done at both
13
  the pixel-level by making predictions on masked images and at shape-level by matching the predictions of the masked input to the unmasked one.
14
  </br>
15
- You can use this demo to segment the most salient object(s) in your images. To use it, simply
16
  upload an image of your choice and hit submit. You will get one or more segmentation maps of the most salient objects present
17
  in your images.
18
  </br>
 
12
  In a self-supervised procedure (i.e. pretext task) without any additional training (i.e. downstream task), context-based representation learning is done at both
13
  the pixel-level by making predictions on masked images and at shape-level by matching the predictions of the masked input to the unmasked one.
14
  </br>
15
+ You can use this demo to segment the most salient as well as novel object(s) in your images. To use it, simply
16
  upload an image of your choice and hit submit. You will get one or more segmentation maps of the most salient objects present
17
  in your images.
18
  </br>